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ABSTRACT

multiQ is a passive capacity measurement tool suitable for large-
scale studies of Internet path characteristics. It is the first passive tool
that discovers the capacity of multiplecongested links along a path
from a single flow trace, and the first tool that effectively extracts
capacity information from ack-only traces. It uses equally-spaced
mode gapsin TCP flows’ packet interarrival time distributions to
detect multiple bottleneck capacities in their relative order.

We validate multiQ in depth using the RON overlay network,
which provides more than 400 heterogeneous, well-understood In-
ternet paths. We compare multiQ with two other capacity mea-
surement tools (Nettimer and Pathrate) in the first large-scale wide-
area evaluation of capacity measurement techniques, and find that
multiQ is highly accurate; for instance, though multiQ is pas-
sive, it achieves the same accuracy as Pathrate, which is active.

Categories and Subject Descriptors: C.2.6 [Computer Commu-
nication Networks]: Internetworking –Measurement
General Terms: Measurement, Management
Keywords: Capacity, Measurement, Modeling

1 INTRODUCTION

Passive estimation of path properties has applications ranging from
overlay network path optimization, to building representative de-
scriptions of the current Internet for use in simulation and modeling,
to tracking the evolution of the Internet over time using a library of
traces collected over multiple years. In this paper, we focus on an im-
portant sub-problem—passively estimating multiple bottleneck link
capacities along a path from a flow trace.

Current passive tools discover the minimum capacity along a path
using logs of data packet interarrival times [10]. They fail, or have
greatly reduced accuracy, when run on ack logs, so one cannot learn
path capacity from sender-side traces, such as those at a Web server.
They also recover only the minimum capacity, obscuring any sec-
ondary bottlenecks inside the network; but secondary bottleneck in-
formation is vital for network modeling and other applications.

We present multiQ, the first passive capacity measurement tool
that avoids both these limitations. multiQ is based on equally-
spaced mode gaps, or EMG, a new passive technique for inferring
multiple link capacities from data or ack interarrival times. In con-
trast to prior work, which has inferred link capacity from the loca-
tion of the modes in the packet interarrival distribution [4, 7, 10, 14],
EMG uses the distance betweenconsecutive modes.

We evaluate multiQ’s accuracy using over 10,000 experiments
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on 400 heterogeneous Internet paths with known likely capacities,
and compare it with Nettimer [10], another passive capacity mea-
surement tool, and Pathrate [4], an active tool. Our results include:

� multiQ is as accurate as Pathrate, which is active. In particular,
85% of the measurements are within 10% of their correct values.

� multiQ is 11% more accurate than Nettimer when both tools
are given access only to receiver-side traces (data packet interar-
rivals). Nettimer needs access to both receiver- and sender-side
logs to achieve accuracy comparable to multiQ.

� Run on ack traces, 70% of multiQ’s measurements are within
20% of their actual values. Though the accuracy is lower than
in the case of data traces, it is a substantial improvement over
prior tools; for instance, run on the same traces, less than 10% of
Nettimer’s measurements are within 20% of their actual values.

2 CROSS TRAFFIC: NOISE OR DATA?
The packet pairtechnique has traditionally been used to infer the
minimum capacity along a path. A sender emits a pair of probe
packets back-to-back; assuming cross traffic does not intervene be-
tween the two probes, they arrive spaced by the transmission time
on the bottleneck link. The capacity of the bottleneck is computed
as C = S=T, where S is the size of the second probe and T is the
time difference between the probes’ arrivals at the receiver.

Cross traffic can cause errors in packet pair-based capacity es-
timates [4]. Compression errors happen when the first packet of
a probe pair gets delayed more than the second, because it gets
queued up behind cross traffic downstream of the bottleneck link.
This shrinks the arrival spacing, leading to an overestimate. Infla-
tion errors occur when cross traffic intervenes between the probe
packets upstream of the bottleneck; this expands the arrival spacing,
leading to an underestimate. To eliminate these cross-traffic effects,
prior work sends trains of packets (packet bunch mode) [16] or a
variety of packet sizes [4]; uses the global mode in the interarrival
histograms [10]; and so forth. Yet, as the bottleneck becomes more
congested, eliminating the effect of cross traffic becomes more chal-
lenging, Given this, is it possible that cross-traffic effects contain
any useful information, rather than just being noise? We demonstrate
that cross traffic, with proper interpretation, actually helps detect not
only the minimum capacity along the path, but also the capacities of
other congested links.

A cross-traffic burstis all traffic that intervenes between two con-
secutive packets of a flow. We seek to understand the probability
distribution of cross-traffic burst sizes: i.e., the chance that a given
amount of traffic will intervene between consecutive packets of a
flow at a congested link. We examined 375 million packets in 258
NLANR traces, collected at 21 backbone locations, with a total of
about 50,000 significant flows. (See Table 1 for a definition of “sig-
nificant flow” and other important terms.) The diversity and size of
this data set makes it a plausible sample of the Internet. For each pair
of packets in a significant flow, we compute the intervening cross-
traffic burst at the link where the trace is taken. This is repeated for
all significant flows. Figure 1a shows the distribution of the sizes of
these bursts. Note the surprising regularity: sharp modes separated
by equal gaps of 1500 bytes.
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Bottleneck A link where traffic faces queuing.
Significant flow A TCP flow that achieves an average packet rate > 10 pps (� 1 pkt/RTT), contains at least 50 packets, and has an MTU of

1500 bytes. (The vast majority of medium-to-long data flows have this MTU.)
Cross-traffic burst Traffic intervening between two consecutive packets of a traced flow.
Capacity The maximum rate at which packets can be transmitted by a link.
Narrow link The link with the smallest capacity along a path.
Tight link The link with minimum available or unused capacity along a path.
Path capacity Capacity of the narrowest link on that path.

Table 1—Definitions of terms used in this paper.
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Figure 1—(a) The distribution of cross traffic between consecutive pack-
ets in a significant flow has equally-spaced mode gaps of 1500 bytes. (b)
The CDF of packet size reveals frequencies of 40- and 1500-byte packets.

To understand this result, see Figure 1b, which shows a cumu-
lative distribution function (CDF) of packet sizes in these traces.
The dominant sizes are 40 and 1500 bytes; no other sizes are highly
pronounced. (This replicates earlier results [22].) Thus, we would
expect that the modes in the burst distribution will stem from 40-
and 1500-byte packets; and 1500-byte packets should dominate the
modes in Figure 1a, given that they are almost 40 times bigger. The
40-byte packets broaden the 1500-byte modes, and less common
sizes create the bed of probability under the modes.

How will these modes be reflected in passive measurements that
might not see the physical cross traffic? Once the measured flow
reaches a point of congestion—a queue—the idle intervals squeeze
out, and the packets (of both our flow and cross traffic) compress
nearer in time. Thus, provided subsequent links are uncongested, the
interarrival times observed at the receiver are proportional to cross-
traffic burst sizes on the congested link. Since the cross-traffic burst
size PDF contains modes separated by 1500 bytes, we expect the
PDF of interarrival times in a flow to have modes separated by the
transmission time of 1500 bytes at some bottleneck link.

3 CAPACITY ESTIMATION WITH EMG
3.1 Examining an Interarrival PDF
We motivate our work by describing the outcome of a simple ex-
periment. We first download a large file from a machine in CCI-
COM which has a 100 Mb/s access link, to one at CMU which has
a 10 Mb/s access link. Figure 2a shows the interarrival PDF of the
data packets. The distribution shows a single spike at 1.2 ms, the
transmission time of a 1500-byte packet on a 10 Mb/s link. There
is nothing special about this PDF; 10 Mb/s is the minimum capacity
link along the path, and the spike in the PDF shows that most packets
were queued back-to-back.

Next, we repeat the experiment along the reverse path and plot the
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Figure 2—Interarrival PDFs for CCICOM–CMU path in both direc-
tions.

interarrival PDF seen at CCICOM in Figure 2. The envelope of the
distribution is again centered near 1.2 ms, because of the upstream
10 Mb/s link; but it is modulated with sharp spikes separated by
equally-spaced mode gaps(EMGs) of 0.12 ms, which is the trans-
mission time of a 1500-byte packet on a 100 Mb/s link.

To understand this PDF, consider what happens as packets go
from CMU to CCICOM. As packets traverse the 10 Mb/s CMU ac-
cess link, they become spaced by 1.2 ms, the transmission time of
one packet on that link. The interarrivals remain relatively unper-
turbed as the packets cross the Internet backbone. Then the packets
reach the 100 Mb/s CCICOM access link, where the flow faces con-
gestion again. There, the spacing of two consecutive packets changes
in one of three ways:

(a) Neither packet is queued(Figure 3a). The interarrival, or the
time between the trailing edges of the two packets, remains 1.2 ms.

(b) Either packet is queued and the queue empties between the de-
parture time of the two packets.Figure 3b shows an example where
the first packet arrives while a cross-traffic packet is in the process
of being transmitted. The packet has to wait for that transmission
to finish, plus any remaining cross-traffic packets in the queue. This
waiting time takes values spread over a wide range, depending on the
total number of bytes that must be transmitted before our packet. If
the second packet is not queued, then the interarrival time becomes
1.2 ms minus the delay of the first packet. Interarrival samples of
this type are spread over a wide range with no pronounced values or
modes, and contribute to the bed of probability under the spikes in
Figure 2. A similar argument applies if the second packet is queued
and the first is not, or even if the two packets are both queued, as
along as the packets belong to different queuing epochs (the queue
empties between their departures).
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Figure 3—Various cases of packet spacing on CCICOM’s access link.
Arrivals are shown above the line, departures below the line. Light pack-
ets are from the traced flow and dark packets are cross traffic. Cross
traffic arrivals are not shown.

(c) Either packet is queued and the queue doesnot empty between
the departure times of the two packets(Figure 3c). The resulting
interarrival is the transmission time of the intervening cross-traffic
burst plus the second packet in the pair. Since cross-traffic bursts
have modes at multiples of 1500 bytes, interarrival samples of this
type will show modes spaced by 0.12 ms (the transmission time of
1500 bytes on 100 Mb/s). The input interarrival of 1.2 ms is a factor
of 10 higher than this mode spacing, so these modes will be centered
around 1.2 ms unless the queuing is extremely bursty.

Figure 2b also shows some symmetry around 1.2 ms. Our traced
packets arrive at the CCICOM queue equally spaced by 1.2 ms. If
cross-traffic effects stretch a pair of packets in the traced flow, the
resulting interarrival sample will lie to the right of the 1.2 ms mode;
if they squeeze the pair, the interarrival sample lies to the left of the
1.2 ms mode. On this link, it seems that the probability of stretching
and squeezing were close.

This simple experiment teaches us two lessons: (1) Equally-spaced
mode gaps (EMGs) in a flow’s interarrival PDF correspond to the
transmission times of 1500-byte packets on some bottleneck along
the path. (2) The envelope of the PDF describes the minimum-capacity
congested link along the path, whose output gets modulated by down-
stream congested links.

3.2 Interarrival PDF Variations
Inspection of interarrival PDFs for over 400 different Internet paths
from the RON testbed (described in x5) shows that most exhibit
equally-spaced mode gaps separated by the transmission time of a
1500-byte packet on a well-known link capacity. For lack of space
we show only a few PDFs, chosen to exemplify the possible shapes.

Figure 4a shows a flow going from a lower-capacity bottleneck
to a higher-capacity one. This time the upstream bottleneck (a T1)
is highly congested, so the 8 ms primary EMGs are modulated by
smaller EMGs of 0.12 ms corresponding to the 100 Mb/s link.

Figure 4b demonstrates a rare case where the PDF contains evi-
dence of a congested link upstreamof the minimum-capacity link.
The flow traverses an upstream highly congested 100 Mb/s bottle-
neck and then a downstream 10 Mb/s bottleneck. The downstream
bottleneck erases the first few spikes, piling up their probability at
1.2 ms, but the tail of 0.12 ms EMGs from the highly-congested
100 Mb/s link is long enough that a second spike remains.

Figure 4c shows an interesting three-bottleneck structure. The min-
imum-capacity bottleneck is a 380 Kb/s link, which is apparent from
the envelope’s peak. The envelope is modulated by EMGs of around
1.2 ms, revealing a 10 Mb/s link. If we then look closely around one
of these modes, we see smaller modes equally spaced at intervals of
0.08 ms, revealing a downstream 155 Mb/s link.

As more bottlenecks leave their fingerprints on the flow’s inter-
arrivals, it becomes harder to disentangle their marks. 2 bottlenecks
are relatively easy to identify, but we’ve never seen more than 3. We
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(c) Three bottlenecks. The envelope peaks at 32 ms, indicating an upstream
380 Kb/s link; 1.2 ms EMGs correspond to the 10 Mb/s downstream link;

and 0.08 ms EMGs in the zoomed figure show a 155 Mb/s bottleneck.
Figure 4—Some interarrival PDFs with equally-spaced mode gaps.

cannot confidently tell the maximum number of detectable bottle-
necks in a single PDF, but without additional information, it will be
difficult to identify more than 3 bottlenecks.

3.3 Ack Interarrivals
Thus far, we’ve created PDFs from data packet interarrivals, using
traces collected downstream of any bottlenecks. This is useful when
we have control of the receiver or some observation point close to
the receiver. However, when the trace is taken at the sender side, the
ack stream holds whatever information can be recovered; and when
the observation point is in the middle of the network, both data and
ack interarrivals should be studied to discover bottlenecks upstream
and downstream of the observation point.

Ack interarrival PDFs contain more information than data inter-
arrival PDFs, but they also have a higher level of noise. The major
differences between the two PDFs are:

(a) Forward- and reverse-path bottlenecks.If every data packet
generated an ack, and ack spacing was undisturbed by the network,
then sender-side ack interarrivals would exactly equal the receiver-
side data packet interarrivals. Of course, the world is more compli-
cated than this. Acks also traverse the network, where their interar-
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Figure 5—The data from Figure 4b at two different resolutions.

rival times pick up a record of any bottlenecks on the reverse path.
This record is superimposed on the record of forward-path bottle-
necks generated by the data packets. We cannot tell whether a spe-
cific bottleneck is on the forward or reverse path unless we examine
the data interarrivals as well.

(b) Noise.Ack PDFs are much noisier than data-packet PDFs.
Data packets are mostly 1500 bytes long; thus, they reinforce the
EMG structure created by cross-traffic bursts (modes spaced by 1500-
byte packets’ transmission time) even if they arrive at the bottleneck
queue back-to-back. 40-byte acks, on the other hand, do not rein-
force the mode structure when they arrive back-to-back.

(c) Delayed acks.In many ack PDFs, the biggest spike is at twice
the transmission time of the 1500 bytes packet on the minimum ca-
pacity link. This is caused by delayed acks, where the receiver gen-
erates one ack for roughly every second data packet.

Examination of many ack PDFs shows that EMG can be applied
to ack interarrivals, but with lower accuracy than data packet inter-
arrivals. In x5.3, we quantify the difference.

4 MULTIQ: AUTOMATING EMG
The multiQ passive bottleneck detection tool automates the EMG
capacity detection technique. It takes as input a tcpdump trace,
or a set of interarrivals obtained some other way, and automatically
discovers and estimates the capacity of the bottlenecks traversed by
certain flows specified by the user.

Automating multiple bottleneck discovery is tricky: it requires in-
terpreting the interarrival PDF to extract the relevant information
and ignore the noise. To do this, multiQ analyzes the interarrival
PDF at a progression of resolutionscorresponding to a known set of
common link speeds. To demonstrate this, Figure 5 plots the CMU-
to-CCICOM data from Figure 2b at two different resolutions. At the
lower resolution, we see one large mode in the distribution, which
corresponds to the upstream lower-capacity bottleneck. As we in-
crease the resolution, the large mode becomes fractured into smaller
spikes corresponding to the higher-capacity bottleneck.

Figure 6 shows the multiQ procedure in pseudocode. At each
resolution, starting with the highest resolution, multiQ constructs
a kernel density estimate of the PDF1 and scans it for modes, which
1Kernel density estimation is a standard method for constructing an

1. Compute flow interarrivals from trace file
2. Set scale:= 10 �s
3. While scale< 10,000 �s:
4. Compute kernel PDF estimate with width = scale
5. Find the modes
6. If there’s only one mode, at M:
7. Output a capacity of (1500 � 8=M) Mb/s
8. Exit
9. Compute the mode gaps

10. Compute the PDF of the gaps
11. Set G := the tallest mode in the gap PDF
12. If the probability in G> 0.5:
13. Output a capacity of (1500 � 8=G) Mb/s
14. Increment scale

Figure 6—Pseudocode for multiQ.

are defined as local maxima with statistically-significant dips.2 The
gaps between these modes are computed. Then, multiQ finds the
probability distribution of the gaps themselves. A mode in the gap’s
PDF corresponds to a highly repeated gap length—the hallmark of
a congested link. If multiQ finds a significantly dominant mode in
the gap distribution at the current resolution, it decides that mode
represents the transmission time of 1500 bytes on some bottleneck,
and outputs that bottleneck’s capacity. If there is no dominant gap at
the current resolution, multiQ decreases the resolution by increas-
ing the kernel width, which is similar to the bin width of a histogram,
and repeats the procedure.

When run on data-packet traces, multiQ estimates the capacity
of bottlenecks upstream from the observation point. To estimate bot-
tleneck capacities downstream of the observation point, it needs ac-
cess to ack traces. When analyzing ack interarrival PDFs, multiQ
uses a slightly different procedure to deal with the first mode in the
PDF: a large spike close to zero is a sign of compressed acks and
should be ignored, whereas a spike located at twice the repeated gap
in the PDF is a sign of delayed acks and corresponds to the transmis-
sion time of 3000 bytes on the bottleneck link. EMG estimation is
less robust on ack traces than data-packet traces, so the current ver-
sion of multiQ does not try to discover bottlenecks with capacity
higher than 155 Mb/s when run on ack traces.

The EMG technique relies on cross-traffic burst structure, which
depends on packet size distribution. If 1500 bytes stops being the
dominant large-packet mode, this technique will fail. Fortunately,
this distribution appears to be changing towards further emphasis
of the 40-byte and 1500-byte modes; for instance, compare Claffy’s
packet size distributions from 1998 and 2001 [3, 22].

5 VALIDATION
We evaluate the accuracy of multiQ using 10,000 experiments over
400 diverse Internet paths from the RON overlay network, and com-
pare it both with known topology information and two other capacity
measurement tools, Pathrate and Nettimer. Our results show:

� When measuring minimum-capacity bottlenecks, multiQ is as
accurate as Pathrate, an active tool, with 85% of its measurements
within 10% of their true value. multiQ is 11% more accurate
than Nettimer when both tools are given access only to receiver-
side traces (data packet interarrivals). Nettimer needs access to

estimate of a PDF from measurements of the random variable; the
flat bins of a histogram would prevent precise mode identification at
low resolutions. We use the quartic kernel density function [21].
2A significant dip [21] is defined as one in which the dips on either
side of a local maximum drop by more than the standard deviation
of the kernel density estimate at the local maximum. The standard
deviation is given by StdDev(g(x)) =

p
g(x)� R(K)=nh, where

g(x) is the estimate at point x, R(K) is the roughness of the kernel
function, n is the number of points, and h is the kernel’s width.
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Figure 7—Comparison of the accuracy of MultiQ, Nettimer and
Pathrate. Graphs show the CDF of the relative error. MultiQ and
Nettimer-R require only receiver-side traces, while Nettimer-SR re-
quires both receiver- and sender- side traces.

both receiver- and sender-side logs to achieve accuracy compara-
ble to multiQ.

� On sender-side ack traces, 70% of multiQ’s measurements are
within 20% of their correct value.

� multiQ automatically detects 64% of the non-minimum-capacity
bottlenecks (“tight” links); misses 21%, though a human could
detect them visually on an interarrival PDF using our EMG tech-
nique; and mislabels 15%.

� multiQ’s average error is highly independent of flow size for
flows larger than 50 packets (discussion omitted for space; see [8]).

5.1 Experimental Methodology
Ideally, we’d like to have information about all the capacities and
loss rates along a large number of heterogeneous paths that form a
representative cross-section of the network. This is inherently diffi-
cult on the Internet, of course, but we have tried to evaluate our tool
on as representative a network as possible. We use the RON overlay
network [18], whose 22 geographically-distributed nodes have a di-
verse set of access links and ISPs on both the commercial Internet
and Internet2. 9 nodes have 100 Mb/s uplinks, 6 have 10 Mb/s, 3
have T1, and 4 have DSL. Of RON’s 462 heterogeneous paths, only
25% use Internet2.

We compare the capacity tools’ estimates for each RON path against
that path’s “true” bottleneck capacity. The “true” capacity was de-
termined by contacting each node’s hosting site and obtaining a list
of all their access links and the capacities of the local networks to
which the nodes are connected. RON nodes not on Internet2 have
low-speed access links ranging from DSL to 10 Mb/s, and hence are
unlikely to encounter a lower-capacity link on the Internet backbone.
For nodes in Internet2, we additionally obtained information about
all Internet2 links on the relevant paths.

To verify the consistency of these “true” capacities, we ran all
three capacity measurement tools and a number of ttcp and UDP
flows of varying rates on each path. If a path’s results pointed out an
inconsistency—for example, if ttcp or UDP obtained more band-
width than the “true” capacity—then we eliminated the path from
our experiments. Only 57 out of 462 paths needed to be eliminated.

We also analyzed the errors in interarrivals of successive packets
computed from tcpdump timestamps. A data set collected at RIPE
containing timestamps from both DAG hardware and tcpdump [23]
indicates that errors in interarrivals are only a few �s. Such small er-
rors should not affect our results.

5.2 Minimum Capacity Estimation
We first evaluate multiQ’s minimum capacity estimation, and com-
pare it with the results of two other capacity measurement tools—
Pathrate, which is active, and Nettimer, which is passive. We first
conduct a 2 minute run of ttcp and collect traces at both endpoints,
which serve as data sets for multiQ and Nettimer. Immediately
thereafter, we run Pathrate on the same path and compute its esti-
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Figure 8—Accuracy of capacity estimates based on ack interarrivals.

mate; we use the average of Pathrate’s high and low estimates. This
procedure is repeated five times, and we report the average. Finally,
the same set of experiments is run both at day and night, to compen-
sate for time-of-day patterns. We plot the relative error � for each
capacity estimate Ce; this is defined as � = Ce�Ct

Ct
, where Ct is the

path’s “true” capacity.
Figure 7 shows the cumulative distribution function (CDF) of the

relative errors of multiQ, Nettimer, and Pathrate estimates on the
405 RON paths with reliable “true” capacities. Nettimer has two
lines: Nettimer-SR uses both sender- and receiver-side traces, while
Nettimer-R uses only receiver-side data-packet traces. multiQ uses
only receiver-side traces. Ideally, the CDF should be a step func-
tion at 0, meaning that all experiments reported the “true” capac-
ity. A negative relative error indicates an underestimate of capacity,
whereas a positive relative error indicates an overestimate.

Our results show that multiQ, though passive, is as accurate as
the active tool Pathrate. In particular, 85% of the measurements are
within 10% of their “true” value. multiQ is more accurate than
Nettimer if both tools are given only receiver-side traces. In this case,
only 74% of Nettimer estimates are within 10% of the actual values.
Nettimer achieves an accuracy comparable to multiQ only when
given access to both receiver- and sender-side traces. All three tools
are biased towards underestimating the capacity.

Next, we look more closely at the errors exhibited by each tool.
multiQ errors are caused mainly by over-smoothing in the itera-
tive procedure for discovering mode gaps. This can flatten the modes
and prevent accurate gap computation. Pathrate’s logs indicate that
its errors happen when the interarrival PDF exhibits many modes;
the correct bottleneck capacity is usually one of those modes, but
Pathrate picks a different mode as the bottleneck capacity. When
Nettimer made errors, we found that often the path has low RTT
(< 16 ms). The tool mistakes the RTT mode in the inter-arrival PDF
for the transmission time over the bottleneck. The effect is most pro-
nounced when Nettimer is operating with only traces at the receiver
side; when it has both traces, we theorize that it can estimate the
RTT and eliminate the corresponding mode.

Further, our experiments show that different tools can disagree on
the capacity of a particular path, but can all be correct. In particular,
Pathrate repeatedly reports capacities of 1 Mb/s for paths going to
cybermesa, while Nettimer and multiQ estimate them as 10 Mb/s.
Further investigation revealed that the differences are due to flow
rate limits. The cybermesa access link capacity of 10 Mb/s is cor-
rectly estimated by Nettimer and multiQ, but Pathrate’s relatively
long trains of back-to-back packets trigger cybermesa’s leaky bucket
rate limit. They exceed the maximum burst size of the leaky bucket
and become limited by the token rate, which is 1 Mb/s; TCP win-
dows stay smaller than the bucket size, and so its packets are spaced
by the actual link. This was confirmed by the site’s owner.

5.3 Minimum Capacity Estimation Using Acks
Unlike existing tools, multiQ can obtain a reasonable capacity es-
timate using only a sender-side trace of ack interarrivals. Figure 8
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shows the relative error of multiQ’s minimum capacity estima-
tion using ack interarrivals. The data comes from the experiments
described in x5.1. Since acks contain information about both for-
ward and reverse links, we define the true capacity Ct for sender-
side multiQ measurements as the minimum of the forward and re-
verse paths’ capacities. Sender-side ack interarrivals produce lower-
quality results than receiver-side data packet interarrivals, but still,
70% of the measurements are within 20% of the “true” value.

5.4 Tight Links
We now evaluate multiQ’s ability to discover non-minimum-ca-
pacity bottlenecks, or tight links. Since it is difficult to say with con-
fidence what the tight links along a path in the Internet are, we limit
our tests to Internet2 paths. Internet2 has a very low utilization [1],
so any congestion should be at the edges, or access links, whose ca-
pacities we know. Also, because downstream narrow links tend to
erase the effect of upstream bottlenecks from data-packet interar-
rivals (see x3.1), we limit this test to paths in which the downstream
bottleneck capacity is larger than the upstream one.

To summarize the results, 64% of the experiments reported a tight
link present on the path, defined as a non-minimum-capacity link
within 20% of the actual tight link capcity. The relative error of these
correct tight link capacities was 0.156; the standard deviation in er-
ror was 0.077. 15% of the experiments reported an incorrect tight
link, and the rest (21%) reported only the minimum bottleneck.

6 RELATED WORK

multiQ is related to prior work on capacity measurements and tight
link discovery. Currently, Nettimer [10] is the main passive tool
for discovering path capacity. Our work builds on its insights, but
achieves higher accuracy and can discover multiple bottleneck ca-
pacities. Further, multiQ can discover bottleneck capacities from
sender or receiver-side traces, whereas Nettimer requires the receiver-
side trace to achieve any accuracy. Jiang and Dovrolis [7] describe a
passive method based on histogram modes.

There are many active tools for measuring path capacity. Some of
these tools try to find the capacities of all links along the path [12,
15]. Others, such as Pathrate, focus on the minimum capacity of
a path [4]. The accuracy and the amount of generated traffic vary
considerably from one tool to another. Being passive, our tool differs
from active tools in its methodology and characteristics. Prior work
that detects tight links has all been active to our knowledge [2, 12].
There are also tools for discovering the available bandwidth along a
path [5, 6, 13, 19, 20], which all actively probe the network.

Much prior work used packet interarrival times to estimate link
capacities. Keshav proposed the packet pair concept for use with
Fair Queuing [9]. Packet pair is at the heart of many capacity and
available bandwidth estimation methods, including ours. Cross traf-
fic can cause errors in packet pair-based capacity estimates. Paxson
observed that the distribution of packet-pair capacity measurements
is multi-modal [17], and Dovrolis et al [4] show that the true ca-
pacity is a local mode of the distribution, often different from its
global mode. It has also been noted that some of the modes in the
interarrival PDF may be created by secondary bottlenecks or post-
narrow links [4, 11, 14]. Various mechanisms to filter out the cross
traffic effects were proposed, such as using the minimum dispersion
in a bunch of packet pairs, using the global mode in the dispersion
distribution [7, 10], and using variable size packet pairs [4].

7 CONCLUSIONS

multiQ is the first passive tool that can discover the capacity of
multiple congested links along the path traversed by a single flow,
and the first tool that effectively extracts capacity information solely

from ack traces. It accomplishes this by extracting useful informa-
tion from cross-traffic bursts, which previous capacity estimation
tools considered to be noise, using the equally-spaced mode gaps
technique. multiQ achieves accuracy comparable to Pathrate, an
active capacity measurement tool, and can detect up to three bottle-
neck capacities along a single path.

The code for multiQ is available as a plugin module for Click, a
modular software system for packet processing and router forward-
ing paths. Simple configurations can extract capacities from live
packet flows, tcpdump traces, traces in other formats, and raw files
of interarrival times. multiQ may be downloaded from
http://nms.lcs.mit.edu/MNM/mm.html.
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