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ABSTRACT

Hardware and software systems are susceptible to bugs and timing side-channel vulner-
abilities. Timing leakage is particularly hard to eliminate because leakage is an emergent
property that can arise from subtle behaviors or interactions between hardware and soft-
ware components in the entire system, with root causes such as non-constant-time code,
compiler-generated timing variation, and microarchitectural side channels. This thesis con-
tributes a new approach using formal verification to rule out such bugs and build systems
that are correct, secure, and leakage-free.

This thesis introduces a new theory called information-preserving refinement (IPR) for
capturing non-leakage in addition to correctness and security, implements a verification
approach for IPR in the Parfait framework, and applies it to verifying hardware security
modules (HSMs). Using Parfait, a developer can verify that an HSM implementation leaks
no more information than is allowed by a succinct application-level specification of the de-
vice’s intended behavior, with proofs covering the implementation’s hardware and software
down to its cycle-precise wire-I/O-level behavior.

This thesis uses Parfait to implement and verify several HSMs, including an ECDSA
certificate-signing HSM and a password-hashing HSM, on top of Ibex and PicoRV32-based
hardware platforms. Parfait provides strong guarantees for these HSMs: for example, it
proves that the ECDSA-on-Ibex implementation—2,300 lines of code and 13,500 lines of
Verilog—leaks nothing more than what is allowed by a 40-line specification of its behavior.
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Chapter 1

Introduction

The main contribution of this thesis is a new formalism and approach for proving the ab-
sence of bugs that leak information, such as timing side channels, in addition to correctness
bugs in hardware and software. This thesis applies this approach to verifying hardware
security modules, with proofs covering their hardware and software stack down to the
cycle-precise wire-I/O level.

1.1 Context: hardware security modules

Hardware securitymodules (HSMs) are widely used as a building block in computer systems
where core security functionality is factored out onto this physically-separate device with
special-purpose hardware and software. HSMs defend against a class of attacks where an
adversary remotely compromises the host machine that the HSM is connected to: even
if the adversary compromises the host machine, the adversary gains only query access to
the HSM, not direct access to its internal state. Protecting secret state behind a carefully-
designed API enables the HSM to enforce key security properties.

Figure 1-1 shows an example of this setup: a certificate authority using a certificate-
signing HSM. The HSM is an independent system—with its own CPU, firmware, RAM, and
persistent memory—connected over an I/O interface (UART, in this example) to the host
machine. The HSM interacts with the outside world solely through its I/O interface to the
host. Figure 1-2 shows the specification of this HSM, which computes ECDSA signatures
while protecting the signing key. When a certificate authority uses such an HSM, an ad-
versary that compromises the server cannot extract the signing key because the HSM’s API
does not expose an operation that returns the key.

As another example: cloud backup systems use HSMs to protect backup encryption keys
with users’ PINs. Figure 1-3 shows a specification for such an HSM, which defends against
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ECDSA Signing
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tx
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Figure 1-1: An example of a system that uses an HSM: a certificate authority server con-
nected to an ECDSA signing HSM over a UART interface.

1 var prf_key: bytes[16]

2 var prf_counter: int{0 <= prf_counter < 2^64}

3 var signing_key: int{0 < signing_key < P256_ORDER}

4

5 def initialize(new_prf_key, new_signing_key):

6 prf_key = new_prf_key

7 prf_counter = 0

8 signing_key = new_signing_key

9

10 def sign(message):

11 if prf_counter == 2^64 - 1:

12 return Error

13 nonce = hmac_sha256(prf_key, prf_counter)

14 prf_counter += 1

15 return ecdsa_p256(message, signing_key, nonce)

Figure 1-2: Pseudocode specification for the ECDSA signing HSM. The specification exposes
an operation to initialize internal state and to sign messages, but it does not expose an
operation that returns the signing key.
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1 var attempts: int

2 var pin: bytes[4]

3 var secret: bytes[32]

4

5 def store(new_secret, new_pin):

6 secret = new_secret

7 pin = new_pin

8 attempts = 0

9

10 def retrieve(guess):

11 if attempts >= 10:

12 return Error

13 if guess != pin:

14 attempts = attempts + 1

15 return Error

16 attempts = 0

17 return secret

Figure 1-3: Pseudocode specification for a simplified PIN-backup HSM, which stores a
backup encryption key protected by a low-entropy PIN. The HSM provides security against
brute-force attacks by enforcing guess limits.

brute-force attacks on the low-entropy PIN by enforcing guess limits for retrieval.
There are billions of deployed HSMs across a variety of server-side and client-side ap-

plications. For example, on the server side, certificate authorities like Let’s Encrypt use
HSMs to store their signing key and sign certificates [1]; cloud providers including Apple,
Google, and WhatsApp use HSMs to enforce guess limits for cloud backup keys protected
by low-entropy PINs [57, 64, 112]; and credit card networks use HSMs for PIN translation,
re-encryption of PIN blocks between nodes in a payment network [48]. On the client side,
the iPhone uses its secure enclave processor to safeguard data encryption keys [9], and
users rely on USB security keys to protect their authentication keys in the face of a compro-
mised computer [100]. While the term “hardware security module” traditionally refers to
devices used on the server side (and often specifically to HSMs implementing the PKCS#11
API [86]), this thesis uses the term to refer to all such special-purpose hardware/software
systems that factor out core security functionality.

12



1.2 Goal: verifying HSMs

Any vulnerability in an HSM’s hardware or software can undermine the security of the
HSM, and in turn, the security of the overall system. Although HSMs are relatively simple,
HSMs have suffered from bugs throughout the hardware/software stack, such as logic bugs,
memory corruption, hardware bugs, and timing side channels [18, 30, 33–38, 60, 76, 107,
116–118], motivating the need for a systematic approach to eliminating such bugs.

Mechanized proofs, which connect an implementation to a mathematical specification
through a computer-checked proof, have shown promise in eliminating entire classes of
bugs in both hardware [31] and software [53, 55, 61, 122]. Empirically, such systems are
effective in eliminating bugs in their verified components [45].

The goal of this thesis is to develop a verification approach and framework to verify
HSM implementations at the circuit level. HSMs are an ideal proving ground for a new
approach to systematically ruling out correctness, security, and leakage bugs because they
(1) are widely-used devices for which security is critical, warranting the effort required
for formal verification, (2) suffer from security bugs in practice, and (3) are complete but
simple enough computer systems to be amenable to an experimental verification effort.

1.3 Challenge: security across levels of abstraction

Systems have large gaps between the specifications of their intended behavior (e.g., tens
of lines of code in a high-level language) and their implementations (e.g., thousands of
lines of C code and tens of thousands of lines of Verilog code implementing an entire hard-
ware and software system). Moving down the stack, each level of abstraction below the
specification—C code, firmware binary, and circuit—introduces additional complexity and
potential for bugs and leakage. For example: a C implementation of the ECDSA specifica-
tion might have an off-by-one error in array indexing, accessing out-of-bounds memory; the
compiler might have a bug in an optimization, producing a miscompiled binary from the
C implementation of elliptic-curve crypto; or the CPU might have a pipeline hazard bug,
causing it to incorrectly execute certain instruction sequences in the compiled binary.

In addition to such correctness bugs, each level of abstraction has the potential to intro-
duce information leakage, including timing side-channel leakage, a class of leakage that has
proven particularly hard to eliminate [3, 22, 62, 63, 69, 70, 115]. Examples of information
leakage bugs include:

• Error messages: C code for the PIN-backup HSM (figure 1-3) that returns different

13



error codes for “guess limit exceeded” vs “incorrect PIN”
• Nondeterministic encodings: serialization code in the PIN-backup HSM that leaves

uninitialized memory contents in unused bytes in an encoding when serializing a
tagged union (e.g., the output Error or secret) into a fixed-length buffer

• Incorrect commit point: an implementation of the PIN-backup HSM that returns the
output before updating persistent memory with attempts = attempts + 1 (like the
bug that affected the iPhone 5s [30])

• Non-constant-time code: a PIN-checking function that leaks how many bytes of a
guess match the PIN by using the C strcmp function, which returns as soon as it finds
a mismatch, leaking information through timing

• Compiler-introduced timing variation: a PIN-checking function that is careful to use
bit twiddling and constant-time code at the C code level, but for which a compiler de-
cides to emit a branch at the assembly code level as an optimization, leaking informa-
tion through timing (like the bug that affected Kyber when compiled with Clang [39])

• Variable-latency instructions: an ECDSA HSM (figure 1-2) that leaks the key by us-
ing mul instructions to multiply secret data on a processor with a variable-latency
multiplier (such as the ARM Cortex-M3 [92]), leaking information through timing

Formally verifying the absence of such bugs that leak information has been particularly
challenging. Traditional approaches that focus on verifying correctness at a particular level
of abstraction (e.g., C code) have a hard time capturing information leakage, because cor-
rectness does not imply non-leakage, and because lower levels of abstraction (e.g., execution
at the hardware level) introduce new observables (e.g., cycle-precise timing behavior) that
do not even exist at higher levels but can leak information. Even when focusing on a par-
ticular level of abstraction such as the circuit level, merely defining non-leakage—what it
means for the wire-level behavior to leak no more information than a specification—is a
challenge.

1.4 State of the art

The security community has long been aware of the importance and practical impact of
timing vulnerabilities in cryptography [24, 25], and more broadly, unintended leakage by
computer systems. However, prior to this thesis, there were no results verifying non-leakage
from an application-level specification down to the cycle-accurate level in hardware.

Some production libraries including BoringSSL, Mbed TLS, and Amazon s2n use ap-
proaches based on software testing to validate constant-time execution of cryptographic
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routines [15, 46, 59]. Several systems, including some like HACL? that are used in pro-
duction, provide formal guarantees about side-channel resistance at the software level [6,
21, 122], but the guarantees do not extend down to the hardware level. Recent work on
leakage models [7, 8, 28, 54, 78, 110] focuses on either software or hardware but also does
not provide end-to-end guarantees. Prior work on verified hardware/software systems [5,
19, 40, 42, 71] focuses on correctness, not security and non-leakage. Chapter 2 elaborates
on prior work.

1.5 Threat model

The systems we build consider an adversary that gains direct access to the wire-level digital
I/O of the HSM, with the ability to set logic levels on the input wires and read logic levels on
the output wires at every cycle. This captures many realistic attacks, such as an adversary
that compromises the host machine and is able to send malformed commands or observe
all wire-level outputs at every clock cycle. Such an adversary may be able to extract secrets
from an HSM, even if that HSM operates correctly when the host machine is well-behaved.

This threat model is focused on remote compromise of the host machine, one of the
primary attacks that HSMs aim to defend against. It does not include physical attacks on
the HSM: while the threat model includes (digital) timing side channels, it does not include
arbitrary side channels [121] such as electromagnetic radiation [4], temperature [58], and
power [75].

1.6 Implementation approach

This thesis contributes an HSM architecture that helps developers avoid timing leakage.
HSMs following this design run an execution loop that (1) reads a command from the I/O
interface, (2) handles the command to produce an in-memory state update and response,
(3) updates persistent state atomically, and (4) sends the response over the I/O interface.

Steps (1) and (4) do not compute over the HSM’s internal state, so it is easy to avoid
secret-dependent timing behavior in this code. Step (3) requires some care to implement
atomicity; it involves persisting a fixed-size state buffer to persistent memory, and the de-
veloper must write this function to run in constant time.

At the core of the HSM is a handle function that implements step (2), implementing
command deserialization, core functionality, and response serialization. The developer
must write this function to run in constant time (i.e., a constant number of hardware cy-
cles), so that the time it takes to process each command depends only on the type of each
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command (e.g., initialize or sign), not on the internal state of the HSM.
Writing code that executes in constant time at the hardware level requires careful pro-

gramming at the C code level, a compiler that preserves constant-time behavior, and hard-
ware that executes the code in constant time. As explained in section 1.3, avoiding leakage
bugs across levels of abstraction is a challenge, which is why this thesis formally verifies
non-leakage at the circuit level.

1.7 Proof approach: information-preserving refinement

This thesis presents information-preserving refinement (IPR), a new formalism that captures
security and non-leakage across levels of abstraction, along with Parfait, a verification ap-
proach for IPR. Parfait verifies the cycle-by-cycle execution of an HSM implementation at
the register-transfer level (RTL), with the compiled firmware loaded into the circuit’s ROM,
proving the absence of bugs across levels of abstraction. Parfait can systematically eliminate
leakage bugs in addition to correctness and security bugs in hardware/software systems,
capturing and ruling out all of the bugs outlined in section 1.3.

1.7.1 Defining non-leakage

The Parfait approach relates the behavior of the physical implementation at the wire-level
interface—the ground truth of what the host machine controls and observes at the digital
level, which captures timing channels at a cycle-accurate level—to a functional specifica-
tion of the methods that the HSM exposes. Figure 1-1 shows an example of a physical
implementation: the host connects to this HSM via two input wires and two output wires,
which the host can read/write at every cycle. Figure 1-2 shows the functional specification
for this HSM. It exposes two operations, initialize and sign. The specification ensures
unique nonces across operations, prevents nonce reuse, and does not expose an operation
for reading back the PRF key or signing key.

Parfait relates a physical implementation to a functional specification with a new def-
inition called information-preserving refinement (IPR), illustrated in figure 1-4. IPR is in-
spired by formalizations of zero knowledge in cryptography [51, 52] and uses the real/ideal
paradigm to define security.

IPR defines a real world that models the host’s view of the HSM in the real world under
the Parfait threat model, and it defines an ideal world that is as abstract as the specifica-
tion, implicitly capturing security guarantees. The IPR definition states that the real world
and ideal world must be observationally equivalent, capturing the notion that the imple-
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Figure 1-4: An illustration of the definition of IPR, an equivalence between a real world
and an ideal world, applied to HSMs.

mentation implements the spec and that its wire-level I/O behavior leaks no additional
information.

In IPR, a driver describes the I/O protocol that a host machine can follow to get correct
results from the HSM, describing how each spec-level operation is implemented in terms
of wire-level I/O with the HSM. The driver is a part of the specification. Its dual, an emu-
lator, is a proof artifact that describes how wire-level behavior can be explained in terms
of spec-level operations. An emulator has no access to a specification’s internal state, but it
must mimic the implementation’s behavior at the wire level with only query access to the
specification. The existence of an emulator shows that no matter what wire-level inputs are
given to the device (including inputs that violate the I/O protocol), the HSM’s wire-level
behavior reveals no more information than the specification.

If an implementation leaks more information than the specification (e.g., has a timing
side channel), an emulator satisfying the IPR definition does not exist. For example, sup-
pose that a leaky implementation of the PIN-backup HSM (figure 1-3) used the C strcmp

function to compare a guess against the stored PIN. In this case, a wire-level input corre-
sponding to a guess 1234 against a stored PIN 1337 (where 1 byte matches) would return
a different (delayed) wire-level output compared to the guess 0000 (where 0 bytes match).
There does not exist an emulator that matches the implementation behavior in both cases:
the emulator can query the specification to determine that the spec-level output is Error,
but it cannot determine the output timing to match the implementation’s wire-level behav-
ior in both cases. A secure implementation would return an error in a constant number of
cycles, and an emulator would be able to match this behavior by querying the specification,
waiting for the (constant) number of cycles it takes an implementation to produce an output
and then sending the output over its physical interface.

17



1.7.2 Proving non-leakage

Parfait leverages the transitivity of IPR to enable a modular proof approach, separating veri-
fication of software and hardware and making verification manageable. Parfait introduces a
new HSM software architecture that enables modular proofs, an approach to verifying IPR
for HSMs that follow this design, frameworks to support mechanical proofs for software
and hardware, and a formalized theory of IPR that ties everything together. Figure 1-5
summarizes the developer workflow for implementing and verifying an HSM with Parfait.

App Spec

app developer

App Impl

System Software

Firmware

Hardware

System-on-a-
Chip (SoC)

CPU ROM
RAMI/O

FLASH

platform developer

IPR IPR

IPR

⇑
proof proof

✓ using Starling ✓ using Knox

✓ by Parfait

Figure 1-5: The Parfait developer workflow. The app developer writes the components
in blue, and the platform developer writes the components in red. The developer uses
tools and frameworks provided by Parfait to verify IPR for software and hardware. Parfait
provides a verified IPR theory that ties together the software and hardware proofs, imposing
no burden on the developer.

The application developer writes: (1) a top-level functional specification App Spec ,
(2) an application software implementation App Impl (at roughly the C code level), and
(3) a computer-checked proof of IPR between the app spec and the app implementa-
tion, supported by Parfait’s Starling framework for verifying IPR for software. The plat-
form developer writes: (1) System Software such as boot code and peripheral drivers, (2)
the Hardware implementation, and (3) a computer-checked proof of IPR between the
app implementation and the complete system-on-a-chip (SoC), supported by Parfait’s Knox
framework for verifying IPR for hardware. Formally-verified theory supplied by Parfait ties
these proofs together to yield the final IPR between the specification and the SoC.

1.8 Contributions

This thesis contributes:
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A new formalism for modeling and reasoning about leakage. Information-preserving
refinement (IPR) relates implementations to specifications and captures the notion that the
implementation leaks no more information than the specification. Using the Coq proof as-
sistant [103], this thesis formalizes the theory of IPR, including four verified proof strategies
for IPR used in different parts of Parfait.

A framework for verifying non-leakage for hardware security modules. The Parfait
framework introduces a modular approach to proving IPR for HSMs, enabled by a new soft-
ware architecture. Parfait consists of two components that implement the proof strategies
verified in Coq: the Starling framework, built on top of the F? [102] proof-oriented pro-
gramming language, for reasoning about software; and the Knox framework, built on top
of the Rosette [104] symbolic execution library, for reasoning about hardware. The Knox
framework introduces two artifacts that are usable outside the context of Parfait: the Rosys
Verilog-to-Rosette toolchain and the Riscette executable Rosette semantics for CompCert
RISC-V assembly.

VerifiedHSMs. To evaluate Parfait, this thesis implements and verifies several HSMs. This
includes an ECDSA signing HSM, where Parfait proves that an implementation, written in
2,300 lines of code and 13,500 lines of Verilog, satisfies a specification written in 40 lines
of code.

1.8.1 Limitations

The techniques and tools developed in this thesis have limitations, described in more detail
in the relevant chapters. Some examples include: Parfait uses several proof tools (Coq,
F?, and Rosette) without a mechanized connection between them (section 3.3); IPR as
formalized in this thesis does not support specifications with randomness (section 4.4);
Parfait HSMs use relatively simple CPU designs used in simpler HSMs today, and supporting
high-performance processors like out-of-order Intel x86 CPUs will likely require additional
ideas and techniques (section 10.2).

1.8.2 Open-source software

We have open-sourced all software developed as part of this thesis. See the project page at
anish.io/parfait for links to all of the software, or see table 1-1 below.
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Table 1-1: Open-source software released as part of Parfait.

github.com/anishathalye/ipr Coq formalization of IPR theory

github.com/anishathalye/starling Starling: F?-based software verification
framework

github.com/anishathalye/knox Knox: Rosette-based hardware verification
framework, including the Rosys Verilog-to-
Rosette toolchain and the Riscette executable
semantics for CompCert RISC-V assembly

github.com/anishathalye/parfait-hsm HSMs verified with Parfait

github.com/anishathalye/knox-hsm Simpler HSMs verified directly with Knox

1.9 Prior publications

This thesis expands upon work covered in three peer-reviewed publications:

• Notary (SOSP 2019): introduces the Rosys Verilog-to-Rosette toolchain.

Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. “No-
tary: A Device for Secure Transaction Approval”. In: Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP). Huntsville, Ontario, Canada, Oct. 2019, pages 97–
113.

• Knox (OSDI 2022): introduces the definition of information-preserving refinement
(IPR) and the Knox framework.

Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. “Verifying Hardware Security
Modules with Information-Preserving Refinement”. In: Proceedings of the 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). Carlsbad, CA, July 2022,
pages 503–519.

• Parfait (SOSP 2024): introduces the mechanization of IPR, the Parfait HSM design
and modular verification approach, Starling framework, Riscette semantics, and an
extension of Knox to support assembly-level specifications.

Anish Athalye, Henry Corrigan-Gibbs, M. Frans Kaashoek, Joseph Tassarotti, and Nickolai Zel-
dovich. “Modular Verification of Secure and Leakage-Free Systems: From Application Spec-
ification to Circuit-Level Implementation”. In: Proceedings of the 30th ACM Symposium on
Operating Systems Principles (SOSP). Austin, TX, Nov. 2024.
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Chapter 2

Related work

This thesis develops a new approach for verifying non-leakage across levels of abstraction
that can capture leakage-freedomwhen “leakage” is not separate from “output,” unlike prior
approaches that rely on leakagemodels (section 2.1) and noninterference (section 2.2). The
definition of information-preserving refinement (IPR) is inspired by simulation-based def-
initions of security in cryptography (section 2.3). Parfait verifies HSMs end-to-end from
specification to register-transfer level (RTL), but unlike prior work on hardware/software
verification (section 2.4), Parfait proves a non-leakage property in addition to functional
correctness. Parfait uses translation validation (section 2.5) as a technique to reason about
correctness and non-leakage at the hardware level while sidestepping the need to directly
prove the hardware correct. The IPR definition bears some resemblance to the properties
secure compilers guarantee about their compilation results (section 2.6). The Parfait ap-
proach targets systems running a single application; other work addresses the problem of
isolating multiple applications running on a single machine (section 2.7).

2.1 Leakage models

Leakage models are a standard technique used to reason about timing side-channel leak-
age. A leakage model is an assumption about what an adversary can observe, informed by
a threat model. For example, a leakage model might assume that an adversary can observe
a program’s control flow and addresses of memory accesses (and nothing else); this might
be derived from a threat model that assumes the existence of a cache side channel and an
adversary co-located on the same machine. Approaches using leakage models commonly
define non-leakage as adversary observations being independent of secrets, formalized us-
ing noninterference (section 2.2).

21



Constant-time programming. Timing side-channel leakage [63] is particularly devas-
tating in cryptographic libraries because it is practically exploitable, even over the net-
work [24, 25]. For this reason, most cryptographic libraries include timing side-channel
leakage within their threat model and attempt to mitigate it by following a constant-time
programming discipline. For example, an implementation will assume a leakage model that
includes control flow and memory accesses, and to prevent leakage under this model, avoid
branching on secrets or accessing memory locations where the address depends on a secret.

Several production cryptography libraries including BoringSSL, Mbed TLS, and Ama-
zon s2n assume various leakage models and include constant-time testing in continuous
integration [15, 59]. Some perform testing without soundness guarantees [56, 65], while
others use tools based on formal methods with soundness guarantees [8, 15, 20, 111].

Several formally verified cryptographic libraries [16], where the focus is on verifying
functional correctness, also reason about timing leakage. Fiat Crypto [41] does not ex-
plicitly specify a leakage model but is secure under the assumption that control flow (and
nothing else) leaks. Jasmin [6] assumes that control flow andmemory read/write addresses
(and nothing else) leak. HACL? [122], ValeCrypt [21, 47], and EverCrypt [93] assume that
control flow, memory read/write addresses, and inputs to variable-latency instructions (and
nothing else) leak.

All of these works protect only against one specific type of leakage—that specified by
their leakagemodel—so their soundness depends onwhether the leakagemodel is accurate.
For example: HACL? assumes constant-time word-level multiplication, but this guarantee
is not provided by certain processors such as the ARM Cortex-M3 [10, 92]; and EverCrypt
proves that secrets never influence branches, addresses of memory accesses, or inputs to
instructions assumed to be timing-dependent (e.g., division), but it does not provably elim-
inate other leakage such as that related to speculative execution.

In contrast, Parfait assumes that the adversary can observe (and control) the wire-level
signals on the I/O interface to the HSM at a cycle-precise level, and it proves that the
wire-level behavior of the circuit at the register-transfer level (RTL) does not leak more
information than the specification.

Constant-time-preserving compilation. Constant-time programming can avoid certain
classes of side-channel leakage, but any guarantees it provides can be undone by a compiler
that does not preserve constant-time behavior. Standard compiler correctness as proven for
compilers like CompCert [67] does not automatically provide such a guarantee. CompCert-
CT [17] defines C-level and assembly-level leakage models, modifies CompCert to eliminate
sources of potential leakage, and proves that the modified compiler preserves constant-time
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behavior of programs with respect to these leakage models.

Leakage models for hardware. Recent hardware-focused work has proposed leakage
models that more accurately model modern hardware than the simpler leakage models
assumed by the cryptography libraries described above; in particular, these leakage models
focus on capturing leakage from speculative execution [28, 54, 78]. Validating hardware
against leakage models through techniques like fuzzing [23, 26, 87, 88, 105] has revealed
gaps between leakage models and hardware implementations.

LeaVe [110] formally verifies a processor’s RTL against a leakage contract. LeaVe has
verified several simple RISC-V processors, including variants of the Ibex processor used in
Parfait case studies. To simplify verification, LeaVe assumes functional correctness of the
processor. In contrast, Parfait does not need to assume functional correctness; instead,
Parfait verifies correctness of the application’s execution on the processor as part of proving
IPR.

2.2 Noninterference

Noninterference [50] captures confidentiality properties in systems where high-sensitivity
inputs should not affect low-sensitivity outputs, which are separate from high-sensitivity
outputs. A range of formal methods have been developed for proving noninterference and
analyzing information flow [96, 109]. Constant-time cryptography (section 2.1) formalizes
freedom from timing side channels as noninterference by defining a leakage trace (the low-
sensitivity output) that captures adversary observations, such as every program counter
value, and proving that any two executions that have matching public inputs but differing
secrets (high-sensitivity inputs) produce identical leakage traces.

Noninterference with declassification [82] separates low and high-sensitivity inputs
(i.e., public and secret inputs) and supports controlled influence of secrets on outputs
through an explicit declassify function that marks secret-dependent values as safe to out-
put. Ironclad [55] uses this style of security definition; the proofs cover only software, not
hardware, and do not rule out timing side channels.

The Parfait setting does not have separate low/high-sensitivity inputs/outputs. There
is just one input, the logic levels on the input wires at every cycle, which the adversary
can control upon compromise of the host machine. Similarly, there is just one output, the
logic levels on the output wires at every cycle, and this is what the adversary observes upon
compromise of the host.

Noninterference does not apply in the Parfait setting; the output can and will be secret-
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dependent. For example, the wire-level output of the ECDSA HSM (figure 1-2) depends
on the signing key. Instead, IPR says that the output does not leak more information than
the specification, which is not a noninterference property. Similarly, noninterference with
declassification does not apply in the Parfait setting. Instead, IPR says that after the HSM
receives inputs from the driver (i.e., corresponding to a spec-level operation), its future be-
havior does not leak more information than the specification, which is not a declassification
property.

2.3 Simulation-based definitions of security

The definition of information-preserving refinement (IPR) is inspired by the real/ideal
paradigm and simulation-based definitions of security for cryptographic zero knowledge,
multiparty computation (MPC), and universal composability [27, 51, 52, 68]. The emulator
in IPR is similar to the simulator in MPC, which formalizes the notion of zero knowledge in
an MPC protocol. Parfait uses this concept to define non-leakage for a hardware/software
system rather than a cryptographic protocol. Among other differences, simulation-based
definitions compare computationally-indistinguishable probability distributions, while IPR
is formalized as an exact input-output trace equivalence between the real world and ideal
world state machines.

2.4 Hardware/software verification

The CLI stack [19], Verisoft project [5], CakeML verified stack [71], and Bedrock2 lightbulb
and garage door [40, 42] verify functional correctness properties for hardware/software
systems, with an emphasis on modular verification. In contrast to Parfait, proofs for these
systems only establish functional correctness and do not rule out information leakage.

2.5 Translation validation

Translation validation is an approach used to verify that a transformation of a program,
typically from a high-level programming language to a lower-level representation like ma-
chine code, refines the source [83, 91, 97, 106]. Translation validation is applied to check
the translation of a particular program; the technique is an alternative to proving that the
transformation (e.g., compilation) is correct for all inputs.

Parfait uses translation validation to verify IPR for some of the levels of abstraction in
the Parfait stack: Parfait does not verify the correctness of the CPU and system-on-a-chip
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(SoC) in general, or prove that a compiler always preserves non-leakage. Instead, Parfait
proves that a particular program satisfies IPR when executed on a specific hardware device.

Most prior uses of translation validation have focused on showing refinements for func-
tional correctness and have stopped validation at the assembly level; Parfait additionally
validates non-leakage as defined by IPR and validates execution down to the level of hard-
ware.

2.6 Secure compilation

In Parfait, the circuit cannot be derived from the specification via compilation, but the
IPR definition bears some resemblance to the properties secure compilers guarantee about
their compilation results. Fully-abstract compilers [2] preserve and reflect observational
equivalence from the source to the target language. Some security properties can be stated
as program equivalences [89], but IPR’s non-leakage property is not captured by this type of
definition. In fact, some Parfait specifications such as the ECDSA HSM (figure 1-2) have no
instances that are observationally (extensionally) equivalent but not intensionally equal, so
a secure-compilation-style equivalence preservation at the circuit level would be vacuous.
Trace-preserving compilation [90] preserves trace equivalence between source and target
and handles invalid target-level inputs. The definition is not general enough to apply to the
HSM setting because source-level inputs don’t map to single target-level inputs (function
call to wire input for a single cycle), and there is no notion of “ignoring invalid inputs” (for
any wire-level inputs, the HSM will have wire-level outputs). Furthermore, similar to the
case of program equivalence, some Parfait specifications such as the ECDSA HSM have no
instances that are trace-equivalent but not equal, so trace-equivalence preservation at the
circuit level would be vacuous.

2.7 Process isolation

Parfait HSMs run a single application, and verification ensures that the software or hard-
ware doesn’t leak information to the outside world. Other work addresses the problem of
leakage or interference between different processes colocated on the same machine [84].

The seL4 kernel [80, 81], mCertiKOS hypervisor [32], Komodo enclave monitor [44],
and Nickel information flow control framework [98] have proved noninterference and other
information flow properties between processes; these proofs do not cover leakage through
microarchitectural state or timing. Ge et al. [49] extend seL4 with mechanisms to prevent
microarchitectural leakage between security domains by, among other techniques, using
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instructions to reset microarchitectural state on domain switches. Sison et al. [99] have
formalized the security guarantees provided by this approach under an abstract model of
OS and hardware behavior.

Process isolation (whether or not it takes into account microarchitectural side channels)
is different from Parfait’s goals: a Parfait HSM runs just a single application, and it must leak
no more information than its specification allows; this is not an isolation/noninterference-
style property. Even if it did operate in a multi-process setting, an HSM application that
leaks its private key through timing (or just directly sends it out over the I/O interface) to
the outside world could be strongly isolated from other processes on the same machine,
but such a system is clearly insecure.
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Chapter 3

Overview

This chapter presents an overview of information-preserving refinement (section 3.1) and
the Parfait approach for verifying HSMs with IPR (section 3.2).

3.1 Information-preserving refinement

Information-preserving refinement is a new formalism for defining non-leakage. IPR relates
two state machines with differing interfaces and states that they are equivalent modulo
interface differences, including capturing that one leaks nomore information than the other.
Parfait applies IPR to reason about HSM correctness and non-leakage by treating both HSM
specifications and their circuit-level implementations as state machines and proving IPR
between them. This section presents an informal overview of IPR, and Chapter 4 provides
the formal definition.

3.1.1 State machines

A state machineM is a 6-tuple (S, s0, I, O, T, ψ) consisting of:

• A set of states S
• An initial state s0 ∈ S

• A set of inputs I
• A set of outputs O
• A transition relation T ⊆ (S × I) × (S ×O), relating a state and an input to a new

state and an output (this relation is often a total function)
• A reset function ψ : S → 2S, mapping a state to all possible states it can reset to
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We define state machine equivalence between two state machinesM1 andM2 that have
identical input/output types, M1 ≈ M2, as trace equivalence (that their I/O behaviors are
identical).

Functional specifications. Developers write Parfait specifications as state machines that
describe the intended input-output behavior of a system at the level of function calls and
return values. Figure 3-1 shows an example, the transition function step from the specifi-
cation of the ECDSA signing HSM, written in explicit state machine style in the F? proof-
oriented programming language [102].

1 let step (st:state_t) (cmd:command_t) : state_t & response_t =

2 match cmd with

3 | Initialize prf_key signing_key ->

4 { prf_key = prf_key; prf_counter = uint 0; signing_key = signing_key },

5 Initialized

6

7 | Sign msg ->

8 if uint_v st.prf_counter < maxint U64 then

9 let data = uint_to_bytes_be st.prf_counter in

10 let nonce = hmac SHA2_256 st.prf_key data in

11 let sig = ecdsa_signature_agile NoHash _ msg st.signing_key nonce in

12 { st with prf_counter = incr st.prf_counter }, Signature sig

13 else

14 st, Signature None

Figure 3-1: The transition function from the functional specification of the ECDSA signing
HSM, written in F?, corresponding to the pseudocode in figure 1-2. The definitions of hmac
and ecdsa_signature_agile are used directly from HACL?, a verified cryptography library.

The specification additionally defines the state type (state_t), initial state, and in-
put/output types (command_t and response_t); specifications don’t have a reset behavior;
figure A-1 contains the complete specification. Developers write specifications in Parfait
as whole-command state machines, with no notion of timing—the interaction model is that
when the client of the state machine invokes an operation (e.g., Sign), the entire operation
is a single atomic step of the state machine, and there are no observables aside from the
return value.

The specification state machine describes how the implementation must behave, and
it implicitly describes what is and isn’t allowed to leak. For example, the specification for
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the ECDSA signing HSM ensures unique nonces across operations, and it doesn’t support
reading out the signing key or PRF key.

Physical implementations. Like specifications, implementations in Parfait are modeled
as state machines, but at the cycle-precise wire-I/O level, so that they capture an imple-
mentation’s behavior as well as what would otherwise be described as “leakage” or “side
channels,” according to our threat model. This captures the ground truth of what the host
machine can influence and observe when interacting with the HSM within Parfait’s threat
model.

Figure 1-1 shows an illustration of the ECDSA signing HSM and its interface. Interpreted
as a state machine, an HSM implementation’s state consists of all registers and memories
in the device, its input is the values on the input wires (rx and cts in this example), and
its output is the values on the output wires (tx and rts in this example). Its step function
is given by the circuit, describing HSM execution for a single clock cycle. Its reset behavior
havocs all volatile registers and memories in the circuit, and asserts the reset line.

This provides a unified way of reasoning about leakage: there is no more separation of
“outputs” from assumed “side-channel leakage” as is done in other approaches like noninter-
ference (section 2.2). Parfait models the implementation at a level that describes everything
that a (possibly malicious) host can influence and observe under our threat model—the
wire-level I/O behavior—and Parfait proves a correspondence between the implementa-
tion and the specification that prevents leakage beyond what is allowed by the spec, as
described next in section 3.1.2.

This way of thinking is applicable to reasoning about leakage in general, not just for
timing side channels and hardware/software systems like that in figure 1-1. For example,
if we wanted to rule out leakage only in software (e.g., through leaky serialization [95]), we
could model an implementation at the level of C code with entire function calls as atomic
state machine steps.

3.1.2 Defining non-leakage

The goal of information-preserving refinement is to define what it means for an implemen-
tation state machine Mi with an low-level interface Ii / Oi to implement a specification
state machine Ms with a high-level interface Is / Os and leak no additional information.
IPR achieves this by defining a correspondence between implementation and specification
that relates the two in terms of both the high-level interface (e.g., spec-level operations)
and the low-level interface (e.g., wire-level I/O). Illustrated in figure 3-2, IPR is defined as
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an observational equivalence between two worlds: the real world, and an ideal world that
implicitly captures security guarantees.

Mi

Ii / Oi

real world

d

Is / Os

Ms

Ii / Oi

ideal world

e

Is / Os

≈
Figure 3-2: The definition of IPR: an implementation Mi is an information-preserving re-
finement of a specification Ms with respect to a driver d if there exists an emulator e such
that the real world is observationally equivalent to the ideal world.

Real world. The real world is set up to have the client interact with the implementation
Mi. In the real world, a program called the driver describes how high-level operations
are implemented in terms of low-level interaction with the implementation. Specifically, a
driver is a program that takes a high-level input of type Is, interacts with the implementation
by making (any number of) queries of type Ii and receiving responses of typeOi, and finally
produces a high-level output of typeOs. In the real world, the client interacts with the same
underlying implementation either directly over the low-level interface or indirectly over the
high-level interface through the driver.

In the context of HSMs, the real world models the host machine connected to the actual
HSM implementation. The host can take a physical view of the device and directly perform
arbitrary wire-level I/O (reading and writing the I/O pins at every cycle). The host can also
take a functional view of the device and follow the HSM’s I/O protocol, which is described
by the driver, akin to a device driver in an operating system. The driver translates spec-level
operations to wire-level I/O, describing how the host invokes the operation and computes
the return value by interacting with the HSM over its wire-level interface.

The host can switch freely between the functional view and the physical view at any
time. Switching from the functional view to the physical view models compromise of the
host machine; switching from the physical view back to the functional viewmodels recovery
(for example, by unplugging the device and moving it to an uncompromised machine).

Ideal world. The ideal world is set up to provide the same interface as the real world
but is as abstract as the specification, implicitly capturing security guarantees. In the ideal
world, the client interacts with the specification Ms. Because the ideal world also needs
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to expose a low-level interface to match the interface exposed by the real world, the ideal
world contains an emulator, a dual of the driver, that is a program that describes how low-
level behavior can be obtained from high-level operations. Specifically, an emulator is a
program that takes a low-level input of type Ii, interacts with the specification by making
(any number of) queries of type Is and receiving responses of type Os, and finally produces
a low-level output of type Oi. This ideal world implicitly captures security: it merely offers
an interface, directly, or indirectly through the emulator, to the specification.

In the context of HSMs, when the host takes a functional view of the device, operations
are invoked directly on the specification, so the behavior is correct and secure by definition.
Under the functional view, spec-level operations are not seen by the emulator. When the
host takes a physical view of the device, the wire-level I/O behavior it observes is produced
by an emulator that only has query access to the specification, so the physical interface leaks
no more information than the specification exposes through its API. Furthermore, when the
host switches back to the functional view of the device, it continues interacting with the
same specification that was queried by the emulator, so the effect of any queries made by
the emulator in order to produce wire-level outputs is present in the specification state. In
the ideal world, any execution, no matter how it switches between functional and physical
interfaces, corresponds to some sequence of operations invoked on the specification. The
ideal world can be instantiated with any emulator, and it remains secure.

Equivalence. We say that an implementationMi is an information-preserving refinement
of a specificationMs with respect to a driver d if there exists an emulator e such that the real
world and ideal world (as defined above, and illustrated in figure 3-2) are observationally
equivalent.

The real world and ideal world themselves can be seen as state machines, and each
exposes both a low-level and high-level interface, so the state machines’ input is of type
Ii + Is and the output is of type Oi + Os. We define observational equivalence between
the IPR worlds as state machine equivalence (≈), which applies to machines with matching
interfaces. The IPR definition is, in other words:

Mi ≈IPR[d] Ms := ∃e, real_world (Mi, d) ≈ ideal_world (Ms, e)

3.2 Verifying IPR with Parfait

Figure 3-3 gives an overview of the Parfait verification approach and developer workflow.
Parfait leverages transitivity to provide a modular proof approach for IPR.
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Figure 3-3: The Parfait verification approach. The app developer writes the components and
proof in blue (verified with the Starling framework in F? [102], chapter 5), off-the-shelf
verified compilers provide the proofs in magenta, and the platform developer writes the
components and proof in red (verified with the Knox framework in Rosette [104], chap-
ter 6). The Parfait framework provides a theory of IPR (in green, verified in Coq [103],
chapter 4) that is verified once-and-for-all. A metalogical argument (in gray) connects the
mechanized proofs done by the HSM developer to the mechanized theory of IPR provided
by Parfait to prove a top-level theorem of IPR between the App Spec and the System-on-a-
Chip (SoC).
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3.2.1 Developer workflow

Parfait supports two largely independent developers: an app developer who writes the
application and a platform developer who provides the system software (for persistence,
peripheral I/O, etc.) and hardware for running the application.

App development. The app developer writes an implementation of the application func-
tionality in Low? [94] (the App Impl [Low?] in figure 3-3), a C-like language for low-level
programming embedded in F?. This includes both the application logic as well as code to
decode incoming requests and encode the responses. Specifically, the app developer imple-
ments the handle function referenced in figure 3-4, which operates on in-memory command
and response buffers. Off-the-shelf verified compilers turn this code into an application bi-
nary (the App Impl [Asm] in figure 3-3).

1 uint8_t state[STATE_SIZE];

2 uint8_t cmd[COMMAND_SIZE];

3 uint8_t resp[RESPONSE_SIZE];

4

5 void main() {

6 while (1) {

7 read_command(&cmd); // read command from I/O interface

8 load_state(&state); // load state from persistent memory

9 handle(&state, &cmd, &resp); // do core computation

10 store_state(&state); // atomically persist state

11 write_response(&resp); // write response to I/O interface

12 }

13 }

Figure 3-4: System software for the main loop of the HSM, invoking the handle func-
tion implemented by the app developer. The system software implements the I/O func-
tions (read_command and write_response) and crash-safe persistence using journaling
(load_state and store_state).

Platform development. The platform developer writes a system-software library, which
implements the system’s overall execution loop and includes everything in the firmware
image except the implementation of the handle function. The system software includes
startup code written in assembly to boot the processor and set up the environment for ex-
ecuting C code, the code shown in figure 3-4, and the implementations of read_command,
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etc. The platform developer then links this code with the application code (the implemen-
tation of handle) from the app developer; the resulting linked binary is the HSM’s firmware
(the Firmware in figure 3-3). The platform developer then implements the Hardware in
Verilog and embeds the HSM’s firmware in the hardware’s ROM.

The result is a complete System-on-a-Chip (SoC) . A user can fabricate it directly or
put it onto an FPGA and run it as a hardware implementation of the HSM app.

3.2.2 Proof approach: transitive IPR

Parfait’s approach to proving IPR between the specification and the SoC is to introduce
several intermediate levels of abstraction, prove IPR between levels, and use the transitivity
of IPR to obtain a top-level theorem relating specification to implementation, as illustrated
in figure 3-3. Parfait relies on the developer to write mechanized proofs about software
and hardware (using F? [102], in blue, and using Rosette [104], in red), with the support
of the Starling and Knox frameworks. Parfait uses verified compilers (in magenta), and
Parfait provides a mechanized theory of IPR (in Coq [103], in green) that is verified once-
and-for-all. A metalogical argument (in gray) ties these together to yield the top-level proof
of IPR between specification and implementation.

Levels of abstraction. Table 3-1 shows the five levels of abstraction used as part of a Parfait
HSM’s overall proof, corresponding to the five artifacts shown in figure 3-3. As illustrated
in figure 3-3, each of these levels can be modeled as (i.e., interpreted as) state machines in
the theory of IPR.

Table 3-1: An overview of the levels of abstraction used in Parfait’s proof. This table shows
the state, input/output types, and transition functions for the levels when modeled as state
machines in the theory of IPR. The specification defines its own types for the state, input,
and output.

Level of abstraction State Input / Output Transition

App Spec [F?] state_t command_t / response_t step() call
App Impl [Low?] Bytes Bytes handle() call
App Impl [C] Bytes Bytes handle() call
App Impl [Asm] Bytes Bytes handle() call
System-on-a-Chip Registers / Memories Wires Cycle step

Parfait’s overall approach involves proving IPR between each level of abstraction. As the
rest of this thesis describes, this decomposition enables Parfait to leverage the best tools for
each refinement, reducing the overall proof effort and reusing existing proofs. At the top
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level is the app-developer-supplied application spec, such as figure 3-1. The second level
is the app implementation, which implements the core application logic and is written in
Low?, operating on machine integers, buffers, etc. In the ECDSA signing HSM, this code is
where the app developer represents bignums as arrays of limbs, implements performance
optimizations such asMontgomerymultiplication, and so on. The third and fourth levels are
compiled versions of the implementation: a C program and an abstract assembly program
(a precursor to the final .s file). The final level is the complete SoC (including the firmware
image in its ROM), with hardware execution modeled at the cycle-precise level. The first
four levels are whole-command state machines, where the execution of an entire operation
is a single step. The last level introduces cycle-precise timing.

Between each of these levels of abstraction, a driver (section 3.1.2) describes how in-
puts/outputs at the higher level of abstraction (e.g., App-level inputs/outputs) map to I/O
at the lower level of abstraction (e.g., bytes). The drivers between the intermediate levels
(Low? to C, and C to Asm) are identity drivers. The driver for the spec level describes how
commands are encoded as bytes and responses are decoded from bytes, and the driver for
the SoC level describes how byte-level commands are sent to the device over the wire, and
how byte-level responses are read from the device over the wire. The top-level driver, be-
tween App Spec and SoC, is a composition of all the drivers between levels of abstraction:
it describes how spec-level operations translate to wire-level I/O.

IPR drivers model the behavior of a well-behaved host machine: the drivers are a part
of the specification. The HSM implementation’s I/O peripheral driver, a part of its system
software, is unrelated to the IPR drivers: all of the implementation’s software, including
this driver code, is covered by verification.

IPR proof approaches. Parfait formalizes the theory of IPR along with four proof tech-
niques for IPR in chapter 4.

IPR by transitivity is a central technique in Parfait used to obtain a top-level theorem
relating the App Spec to the SoC.

IPR by lockstep applies when two state machines have differing input/output types but
there is a one-to-one correspondence between the steps of the spec and implementation
state machine. This is the case between the first two levels of abstraction: the F? App Spec
operates at the level of abstract app commands/responses (F? data types command_t and
response_t), and the implementation operates on buffers of bytes, but a single step of the
spec state machine corresponds to a single step of the implementation state machine (a
single invocation of handle). A set of conditions we call lockstep is sufficient to prove IPR in
this case. This technique does not require the developer to supply an emulator; instead, the
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developer only needs to supply encode/decode functions that convert between spec-level
and implementation-level inputs and outputs.

IPR by equivalence applies when two state machines have identical input/output types
and are behaviorally equivalent. This applies when using verified compilers, where the
state machines given by the corresponding models are equivalent: behavioral equivalence
implies IPR. This technique does not require the developer to supply an emulator; the state
machines are related by the identity emulator.

IPR by functional-physical simulation is a generalization of forward simulation [74] to
the IPR setting, which applies when there is a functional-physical simulation relation that
holds between high-level operations or sequences of low-level operations. The existence of
such a relation implies IPR. This technique requires the developer to supply an emulator
(section 6.3 describes a strategy for constructing emulators for the circuit level of abstrac-
tion).

These four proof techniques for IPR are verified once-and-for-all by the Parfait frame-
work using the Coq proof assistant.

Software and hardware proofs. The app developer starts by writing a top-level appli-
cation specification in a functional style, represented by the App Spec in figure 3-3, such
as the ECDSA spec (figure 3-1). Application specifications describe input-output behavior
with no notions of data encodings, wire-level signals, or timing behavior. Next, the devel-
oper uses the Starling framework to prove lockstep between the specification and the app
implementation. Starling encodes the lockstep property as a standard Hoare logic precon-
dition/postcondition for the Low? handle function, which allows the developer to reuse
existing verified software; for example, in our prototype, we build on the HACL? verified
cryptography library, including reusing its proofs. From the Low? implementation, Parfait
uses verified compilers (KaRaMeL [94] and CompCert [67]) to produce an assembly imple-
mentation that is behaviorally equivalent to the Low? code, so equivalence holds between
the interpretations of the levels as state machines. Chapter 5 describes this software verifi-
cation workflow in detail.

Next, the platform developer proves that executing the final SoC, with the binary firmware
image embedded as the ROM contents, securely implements the assembly, using the Knox
framework to prove the functional-physical simulation property. Chapter 6 describes this
hardware verification workflow in detail.

Metalogical arguments. Finally, Parfait combines these proofs together into a single end-
to-end proof showing that the SoC securely implements the App Spec. This ensures there is
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no leakage by the implementation—be it encoding bugs, compiler bugs, or timing bugs in
the CPU hardware. To combine proofs together in a sound way, Parfait models each level of
abstraction to a state machine in the language of information-preserving refinement (IPR)
and uses the verified proof strategies, including the transitivity of IPR, to prove the top-level
IPR between App Spec and SoC.

Each level (e.g., Asm code) has an interpretation as a state machine in the formalization
of IPR. This is the connection to the theory mechanized in Coq. For example, figure 5-3
shows how the Asm code is interpreted as a state machine. This modeling is metalogical
(i.e., an on-paper argument rather than a machine-checked proof), as is the connection
between (1) Starling’s encoding of lockstep in F? and the Coq definition of lockstep, and
(2) Knox’s encoding of functional-physical simulation in Rosette and the Coq definition of
functional-physical simulation.

For compiling Low? to C, Parfait uses KaRaMeL; compiler correctness implies that in-
terpretations of the Low? and C as whole-command state machines are equivalent state
machines (section 5.3), a metalogical argument that connects to the Coq proof that equiva-
lence implies IPR. KaRaMeL has a semantics for the C target, and CompCert has a semantics
for its C source; Parfait requires that the semantics align, another metalogical argument
(section 5.5).

For compiling C to Asm, Parfait uses CompCert; its (proven-in-Coq) correctness im-
plies that the interpretations of the C and Asm as state machines are equivalent, another
metalogical argument. Like the C code, the Asm code has a dual interpretation, one as a
CompCert target (the CompCert RISC-V semantics), and another according to the Riscette
semantics, our implementation of the CompCert RISC-V semantics in Rosette. Like the dual
interpretation of C, these semantics must align (section 6.6).

Trusted computing base. Among the code the HSM developer writes, the App Spec and
IPR driver (model of how a well-behaved host communicates) are in the trusted computing
base (TCB). The Low? app implementation, system software including device drivers (that
run on the HSM), and hardware are all untrusted, and covered by verification. Chapter 7
describes the TCB of the Parfait framework itself.

3.3 Discussion

Parfait uses separate verification tools and frameworks for different parts of the stack, us-
ing the best tool for the job: the Starling framework for software built on top of F? to
leverage Low? and reuse HACL? proofs; the Knox framework for hardware built on top
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of Rosette [104] to leverage Rosette’s hybrid symbolic execution capabilities; and theory
verified in Coq [103] to tie everything together. Parfait does not currently have a mecha-
nized connection between these tools. This is a tradeoff: using the best tool for each job
means that formality gaps arise when combining separate verification tools used to verify
sophisticated systems. This is a relatively new technique in systems verification, used in
projects like DaisyNFS [29], which verifies a file system using Dafny [66] and Coq. Formal-
ity gaps can be eliminated (usually with considerable effort) by using a single verification
framework for the whole stack [40, 42].
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Chapter 4

Formalizing IPR

This chapter begins with a formalization of state machines (section 4.1) and then pre-
cisely states the definition of information-preserving refinement (section 4.2). Finally, it
formalizes the four proof techniques for IPR (section 4.3) that are used in the Parfait ap-
proach, including the lockstep property proved by Starling when verifying software and
the functional-physical simulation property proved by Knox when verifying hardware. This
presentation closely follows the Coq formalization.1

4.1 State machines

We formalize state machines as follows:

1 Inductive result (T S : Type) :=

2 | Result : T -> S -> result T S.

3

4 Record machine (input output : Type) :=

5 {

6 state : Type;

7 init : state;

8 step : state -> input -> result output state -> Prop;

9 reset : state -> state -> Prop;

10 }.

State machines are parameterized by an input and output type, have an internal state,
and start with an initial state given by init. Their behavior is described by two relations:

1github.com/anishathalye/ipr
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step is the transition relation that describes how an input produces an output along with
a new state; reset describes the reset behavior of the machine. We illustrate machines as
shown in figure 4-1, emphasizing the I/O interface of the machine.

M

I / O

Figure 4-1: Illustration of a state machineM of type machine I O.

4.1.1 Application to HSMs

Parfait models both functional specifications and physical implementations as state ma-
chines. Figure 3-1 shows an example of a functional specification, a state machine speci-
fying the ECDSA signing HSM (in F?, not Coq). Its inputs and outputs are high-level com-
mands and responses (like Sign msg and Signature sig). In practice, our specifications’
behaviors are described by step functions, so the step relation is deterministic and total:

1 Definition deterministic {I O : Type} (M : machine I O) : Prop :=

2 forall s i r1 r2,

3 M.(step) s i r1 ->

4 M.(step) s i r2 ->

5 r1 = r2.

6

7 Definition total {I O : Type} (M : machine I O) : Prop :=

8 forall s i,

9 exists r,

10 M.(step) s i r.

Furthermore, specifications do not make use of reset behavior: for specs, reset is the
identity relation:

1 Definition no_reset {I O : Type} (M : machine I O) : Prop :=

2 M.(reset) = fun s s' => s = s'.

Parfait models implementations as state machines as well; their inputs and outputs
correspond to wire-level inputs and outputs at the cycle-precise level. For example, for the
ECDSA HSM implementation (figure 1-1), the inputs and outputs (in Coq syntax) are:
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1 Record input := { rx : bool; cts : bool }.

2

3 Record output := { tx : bool; rts : bool }.

The implementation’s state is the internal state of the circuit (all registers and memo-
ries), and the step relation describes the execution of the circuit for a single cycle. In our
implementations, the circuit’s step behavior is deterministic and total. The state machine’s
reset relation models what happens when the HSM is reset or unplugged from the host
machine. It is a total (but not deterministic) relation that havocs any volatile registers and
memories in the circuit’s state and asserts the reset signal for a cycle, which will cause the
circuit to set the program counter to the boot address, among other initialization behavior.

When discussing state machines corresponding to functional specifications, we use the
term functional interface to describe the spec-level I/O interface; for physical implementa-
tions, we use the term physical interface to describe the wire-level I/O interface.

Parfait specifications and implementations have deterministic step functions, but the
IPR formalization supports nondeterminism. Furthermore, the formalism uses machines
to define the IPR real and ideal worlds, and the real world (section 4.2.2) can be nonde-
terministic even with a deterministic implementation if the driver is nondeterministic; our
hardware drivers are nondeterministic in practice (section 6.3).

4.1.2 Refinement and equivalence

When state machines have matching input and output types, we can define what it means
for them to be observationally equivalent. We define this state machine equivalence in
terms of trace inclusion. We first define traces:

1 Inductive event (I O : Type) :=

2 | IO : I -> O -> event I O

3 | Reset : event I O.

4

5 Definition trace (I O : Type) := list (event I O).

An event is either an I/O event or a reset event, and a trace is any sequence of events.
Then, we define executions of a machine:
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1 Inductive execution {I O : Type} (M : machine I O) :

2 M.(state) -> trace I O -> M.(state) -> Prop :=

3 | ExecutionEmpty : forall s,

4 execution _ s nil s

5 | ExecutionStep : forall s i s' o tr s'',

6 M.(step) s i (Result o s') ->

7 execution _ s' tr s'' ->

8 execution _ s (IO i o :: tr) s''

9 | ExecutionReset : forall s s' tr s'',

10 M.(reset) s s' ->

11 execution _ s' tr s'' ->

12 execution _ s (Reset :: tr) s''.

An execution M s tr s′ relates a machine M starting from state s and a trace tr to a
final state s′. Next, we define what it means for a trace to be included in the set of traces
of a machine:

1 Definition in_traces {I O : Type} (M : machine I O) (tr : trace I O) : Prop :=

2 exists sf, execution M M.(init) tr sf.

A trace tr is contained in the set of traces for a machine if there exists a final state sf
such that there’s an execution from the initial state and trace to the final state. Finally,
we define the notion that one machine refines another using trace inclusion, and we define
behavioral equivalence as bidirectional refinement:

1 Definition refines {I O : Type} (M1 M2 : machine I O) : Prop :=

2 forall tr,

3 in_traces M1 tr ->

4 in_traces M2 tr.

5

6 Definition equivalent {I O : Type} (M1 M2 : machine I O) : Prop :=

7 refines M1 M2 /\ refines M2 M1.

This definition of equivalence applies only to relate two state machines with the same
I/O interface.
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4.2 Defining non-leakage

We define and formalize a new notion of state machine refinement called information-
preserving refinement (IPR) to relate two state machines, formalizing the intuition from
section 3.1.2. IPR relates an implementation state machine M1 : machine I1 O1 to a spec-
ification state machine M2 : machine I2 O2 with a different I/O interface and captures
non-leakage.

4.2.1 I/O multiplexing

As a component of our formalization, we define the notion of multiplexing the interface to a
state machine to expose a “left and right interface,” as illustrated in figure 4-2. This merely
tags inputs/outputs as “left” or “right” and does not otherwise change the behavior of the
machine.

M

I / O I / O

I / O

Figure 4-2: I/O multiplexing, to adapt the I/O interface of a machine M : machine I O to
a machine (I + I) (O +O).

Formally, multiplexing is defined as follows:
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1 Variable I O : Type.

2 Variable M : machine I O.

3

4 Inductive mux_step : M.(state) -> (I + I) -> result (O + O) M.(state) -> Prop :=

5 | MuxStepL : forall s i s' o,

6 M.(step) s i (Result o s') ->

7 mux_step s (inl i) (Result (inl o) s')

8 | MuxStepR : forall s i s' o,

9 M.(step) s i (Result o s') ->

10 mux_step s (inr i) (Result (inr o) s').

11

12 Definition mux : machine (I + I) (O + O) :=

13 {|

14 state := M.(state);

15 init := M.(init);

16 step := mux_step;

17 reset := M.(reset);

18 |}.

An input tagged inl always produces an inl-tagged output, and analogously, an inr-
tagged input produces an inr-tagged output.

4.2.2 Real world

A driver, similar to a device driver in an operating system, describes how to obtain spec-level
behavior from the implementation-level interface. In the HSM setting, the driver describes
how spec-level operations translate to wire-level interaction with the HSM implementation.
For example, for the ECDSAHSM (figure 1-1) the driver encodes how a spec-level command
like Sign msg is encoded as bytes, how the encoded bytes are sent to the HSM over its wire-
level interface following the UART protocol, and how the response is read and decoded into
a spec-level response like Signature sig.

In the Coq formalization, drivers are written in a shallowly-embedded language dproc

that has the ability to Call implementation-level operations:
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1 Inductive dproc (I O : Type) : Type -> Type :=

2 | DCall : I -> dproc _ _ O

3 | DRet : forall T, T -> dproc _ _ T

4 | DBind : forall T T1, dproc _ _ T1 -> (T1 -> dproc _ _ T) -> dproc _ _ T

5 | DWhile : dproc _ _ bool -> dproc _ _ unit -> dproc _ _ unit

6 | DChoose : forall T (p1 p2 : dproc _ _ T), dproc _ _ T.

7

8 Definition driver (I1 O1 I2 O2 : Type) := I2 -> dproc I1 O1 O2.

Drivers are programs that take in a spec-level input of type I2 and return a dproc that
may make calls to an underlying implementation with I/O types I1 / O1 and that returns
a final spec-level output of type O2. The DWhile command allows drivers to perform loops.
DChoose allows drivers to be nondeterministic; for example, a driver for the ECDSA HSM
might use DChoose to model a host that can wait an arbitrary number of cycles between
sending bytes as part of the UART protocol. We also introduce some notation for construc-
tors, including do-notation _ <- _; _ and >>= for monadic bind and || for nondeterministic
choice.

The driver’s execution semantics are given by the relation dexec, which describes what
it means to execute a dproc with respect to an underlying implementation state machine:

1 Inductive dexec {Il Ir Ol Or : Type} (M : machine (Il + Ir) (Ol + Or)) :

2 forall T, dproc Il Ol T -> M.(state) -> result T M.(state) -> Prop :=

3 | DexecCall : forall s i s' o,

4 M.(step) s (inl i) (Result (inl o) s') ->

5 dexec _ _ (Call i) s (Result o s')

6 | DexecRet : forall T (v : T) s,

7 dexec _ _ (Ret v) s (Result v s)

8 | DexecBind : forall T T1 (p : dproc _ _ T1) (p' : T1 -> dproc _ _ T) s v s' res,

9 dexec _ _ p s (Result v s') ->

10 dexec _ _ (p' v) s' res ->

11 dexec _ _ (p >>= p') s res

12 | ...

A dexec M T d s (Result v s′) relates a dproc d returning a value of type T running
against a machine M with starting state s to an output v and final machine state s′. For
brevity, we omit the rules for While and Choose. Call executes an operation against the
left-side interface of a state machine of type machine (Il + Ir) (Ol +Or).
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Definition. Figure 4-3 shows the definition of the IPR real world, which is parameterized
by a machine M1 : machine I1 O1 and a driver that implements a spec-level (I2 / O2)
interface in terms of interactions with the implementation state machine. In the real world,
the client of the state machine can either use the spec-level interface or the implementation-
level interface to interact with the underlying state machineM1.

M1

I1 / O1

real world

driver

I2 / O2

Figure 4-3: The IPR real world, which defines a state machine that adapts the implemen-
tation using the mux and driver to expose both a spec-level and an implementation-level
interface.

In the HSM setting, this captures that a host machine can follow an I/O protocol (dic-
tated by the driver) to obtain spec-level behavior from the HSM, or it can interact with
the HSM in an arbitrary way at the wire level; the host can freely switch between these
interfaces. A well-behaved host interacts with the implementation only through the driver.
If the host is compromised, it may perform arbitrary wire-level I/O, interacting with the
implementation directly through the wire-level interface and bypassing the driver (which
captures protocol-following behavior as well, because such behavior is a subset of arbi-
trary wire-level I/O). A host switching back from the implementation-level interface to the
spec-level interface represents the host recovering or the HSM being removed from the
compromised machine and attached to a different one. In this case, we assume the HSM
is issued a reset command by the host or receives a power-on reset. To model this, the real
world keeps track of whether it’s in “low-level mode” or “high-level mode” based on the
previous input, and the real world issues a reset to the underlying implementation before
transitioning from low-level mode to high-level mode.

Formalization. We begin by formalizing the notion of adding a driver to adapt the left-
side interface of a state machine M1 : machine (I1 + Ir) (O1 +Or) to have a higher-level
interface I2 / O2, adapting the overall machine to have type machine (I2 + Ir) (O2 +Or).
The state of this driver-equipped machine is the state of the underlying state machineM1,
along with a “mode” that tracks whether the last input was a low-level or high-level input:
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1 Variable Ir Or I1 O1 I2 O2 : Type.

2 Variable M1 : machine (I1 + Ir) (O1 + Or).

3 Variable d : driver I1 O1 I2 O2.

4

5 Inductive driver_state (S : Type) :=

6 | DriverHigh : S -> driver_state S

7 | DriverLow : S -> driver_state S.

The step function for this state machine is defined as follows:

1 Inductive driver_step :

2 driver_state M1.(state) ->

3 (I2 + Ir) ->

4 result (O2 + Or) (driver_state M1.(state)) ->

5 Prop :=

6 | DriverStepLowLow : forall s il s' ol,

7 M1.(step) s (inr il) (Result (inr ol) s') ->

8 driver_step (DriverLow s) (inr il) (Result (inr ol) (DriverLow s'))

9 | DriverStepHighLow : forall s il s' ol,

10 M1.(step) s (inr il) (Result (inr ol) s') ->

11 driver_step (DriverHigh s) (inr il) (Result (inr ol) (DriverLow s'))

12 | DriverStepLowHigh : forall s s' i2 s'' o2,

13 M1.(reset) s s' ->

14 dexec _ _ (d i2) s' (Result o2 s'') ->

15 driver_step (DriverLow s) (inl i2) (Result (inl o2) (DriverHigh s''))

16 | DriverStepHighHigh : forall s i2 s' o2,

17 dexec _ _ (d i2) s (Result o2 s') ->

18 driver_step (DriverHigh s) (inl i2) (Result (inl o2) (DriverHigh s')).

When the machine gets a low-level input, it simply passes it on to the underlying im-
plementation machine M1 (cases DriverStepLowLow and DriverStepHighLow). When the
machine gets a high-level input, it executes the driver to drive the underlying machine
(cases DriverStepLowHigh and DriverStepHighHigh). If the machine gets a high-level in-
put while in low-level mode (DriverStepLowHigh), it first resets the underlying machine
before running the driver. Next, we define the reset behavior of the real world machine:
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1 Definition driver_reset (s1 s2 : driver_state M1.(state)) : Prop :=

2 match s1 with

3 | DriverHigh s1'

4 | DriverLow s1' =>

5 match s2 with

6 | DriverHigh s2' => M1.(reset) s1' s2'

7 | _ => False

8 end

9 end.

Reset is defined to reset the underlying implementation and switch back into high-level
mode. Combining these definitions, we define add_driver:

1 Definition add_driver : machine (I2 + Ir) (O2 + Or) :=

2 {|

3 state := driver_state _;

4 init := DriverHigh M1.(init);

5 step := driver_step;

6 reset := driver_reset;

7 |}.

Finally, we define the real_world state machine, which is parameterized by a machine
M1 : machine I1 O1 and a driver d : driver I1 I2 O1 O2. This is the formal definition
corresponding to figure 4-3:

1 Definition real_world {I1 O1 I2 O2 : Type}

2 (M1 : machine I1 O1) (d : driver I1 O1 I2 O2) :

3 machine (I2 + I1) (O2 + O1) :=

4 add_driver (mux M1) d.

4.2.3 Ideal world

An emulator is a dual of the driver: it describes how to obtain implementation-level behavior
from a spec-level interface. It differs from the driver in that the emulator is deterministic,
and it has the ability to store internal state.
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In the Coq formalization, emulators are written in a shallowly-embedded language
eproc that have the ability to Call spec-level operations, as well as store and retrieve inter-
nal state via Put and Get:

1 Inductive eproc (S I O : Type) : Type -> Type :=

2 | ECall : I -> eproc _ _ _ O

3 | EGet : eproc _ _ _ S

4 | EPut : S -> eproc _ _ _ unit

5 | ERet : forall T, T -> eproc _ _ _ T

6 | EBind : forall T T1, eproc _ _ _ T1 -> (T1 -> eproc _ _ _ T) -> eproc _ _ _ T

7 | EWhile : eproc _ _ _ bool -> eproc _ _ _ unit -> eproc _ _ _ unit.

8

9 Record emulator (I2 O2 I1 O1 : Type) :=

10 {

11 estate : Type;

12 einit : estate;

13 estep : I1 -> eproc estate I2 O2 O1

14 }.

Emulators have an internal state type, an initial state, and a step function that takes in an
implementation-level input of type I1 and returns an eproc that maymake calls to an under-
lying specification state machine with I/O types I2 / O2 and return a final implementation-
level output of typeO1. Similar to drivers, we introduce notation for constructors, including
do-notation _ <- _; _ and >>= for monadic bind.

The emulator’s semantics are given by the relation eexec, which describes what it means
to execute an eproc with respect to an underlying specification state machine:
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1 Inductive eexec {S Il Ir Ol Or : Type} (M : machine (Il + Ir) (Ol + Or)) :

2 forall T, eproc S Ir Or T ->

3 (M.(state) * S) ->

4 result T (M.(state) * S) ->

5 Prop :=

6 | EexecCall : forall ms es i ms' o,

7 M.(step) ms (inr i) (Result (inr o) ms') ->

8 eexec _ _ (Call i) (ms, es) (Result o (ms', es))

9 | EexecGet : forall ms es,

10 eexec _ _ (Get) (ms, es) (Result es (ms, es))

11 | EexecPut : forall (es' : S) ms es,

12 eexec _ _ (Put es') (ms, es) (Result tt (ms, es'))

13 | ...

An eexec M T e (s, σ) (Result v (s′, σ′)) relates a eproc e with emulator state σ
returning a value of type T running against a machineM with starting state s to an output
v, final emulator state σ′, and final machine state s′.

Definition. Figure 4-4 shows the definition of the IPR ideal world, which is parameterized
by a machine M2 : machine I2 O2 and an emulator that implements an implementation-
level (I1 / O1) interface in terms of interactions with the specification state machine. Like
in the real world, in the ideal world, the client of the state machine can either use the spec-
level interface or the implementation-level interface to interact with the underlying state
machineM2.

M2

I1 / O1

ideal world

emulator

I2 / O2

Figure 4-4: The IPR ideal world, which defines a state machine that adapts the specifica-
tion using the mux and emulator to expose both a spec-level and an implementation-level
interface.

The ideal world is designed to implicitly capture security guarantees by being as ab-
stract as the specification. In the HSM setting, the setup captures that a host machine can
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obtain spec-level behavior, or it can interact at a wire level, freely switching between these
interfaces. A well-behaved host interacts with the ideal world machine only through the
spec-level interface, and this interaction is fed through directly to the underlying speci-
fication state machine M2, so these interactions are secure by construction. If the host is
compromised, it may perform arbitrary implementation-level I/O; this goes to the emulator,
which invokes spec-level operations but has no visibility into the internals of the specifica-
tion, only query access—any outputs that come out of the emulator are merely computed
based on outputs from the specification itself, so interaction with the emulator cannot leak
any more information than the specification itself does.

Like the real world, the ideal world keeps track of a “mode.” When the ideal world is
operating in high-level mode, the emulator retains no state; when the ideal world gets a
low-level input, the emulator state is initialized to the constant einit, and emulator state
is retained for subsequent low-level operations until the next high-level input. In the HSM
setting: if the host machine is compromised and switches from the high-level interface to
the low-level one, it interacts with the specification through an emulator that’s initialized
with a constant state, so the emulator does not obtain any extra information or retain any
information from past interactions of the host with the emulator. This is relevant if the
host is compromised, restored, and then compromised again: the information that can be
obtained by an adversary could also be obtained via query access to the specification at the
moment of the second compromise.

Formalization. We begin by formalizing the notion of adding an emulator to adapt the
right-side interface of a state machine M2 : machine (Il + I2) (Ol +O2) to have a lower-
level interface I1 /O1, adapting the overall machine to have type machine (Il + I1) (Ol +O1).
The state of this emulator-equipped machine is the state of the underlying state machine
M2, along with a “mode” that tracks whether the last input was a low-level input or high-
level input; additionally, in the case of the low-level mode, the state contains an emulator-
internal state.

1 Variable Il Ol I1 O1 I2 O2 : Type.

2 Variable M2 : machine (Il + I2) (Ol + O2).

3 Variable e : emulator I2 O2 I1 O1.

4

5 Inductive emulator_state (S ES : Type) :=

6 | EmulatorHigh : S -> emulator_state S ES

7 | EmulatorLow : S -> ES -> emulator_state S ES.
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The step function for this state machine is analogous to driver_step, except that it
initializes the emulator state when switching from high-level to low-level mode, and it
threads through the emulator state when operating on a sequence of low-level inputs. The
reset behavior of this machine is analogous to driver_reset.

Using the step and reset relations, we can define:

1 Definition add_emulator : machine (Il + I1) (Ol + O1) := ...

Finally, we define the ideal_world state machine, which is parameterized by a machine
M2 : machine I2 O2 and an emulator e : emulator I2 O2 I1 O1. This is the formal definition
corresponding to figure 4-4:

1 Definition ideal_world {I1 O1 I2 O2 : Type}

2 (M2 : machine I2 O2) (e : emulator I2 O2 I1 O1) :

3 machine (I2 + I1) (O2 + O1) :=

4 add_emulator (mux M2) e.

4.2.4 IPR definition

M1

I1 / O1

real world

d

I2 / O2

M2

I1 / O1

ideal world

e

I2 / O2

≈

Figure 4-5: The definition of IPR: an implementation M1 is an information-preserving re-
finement of a specification M2 with respect to a driver d if there exists an emulator e such
that the real world is observationally equivalent to the ideal world.

Figure 4-5 illustrates the definition of IPR, an equivalence between the real world and
ideal world. We formalize M1 being an information-preserving refinement of M2 with re-
spect to a driver d,M1 ≈IPR[d] M2, as follows:
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1 Definition IPR {I1 O1 I2 O2}

2 (M1 : machine I1 O1) (M2 : machine I2 O2) (d : driver I1 O1 I2 O2) : Prop :=

3 exists (e : emulator I2 O2 I1 O1),

4 equivalent (real_world M1 d) (ideal_world M2 e).

4.3 Proof techniques

Parfait uses four proof techniques for IPR for different levels of abstraction. The overall
approach relies on the transitivity of IPR. Proofs of some intermediate levels rely on the
property that equivalence between state machines implies IPR with the identity driver.
The software-level proof uses the lockstep proof technique, which simplifies proving IPR
when there is a one-to-one relationship between implementation-level and spec-level state
machine steps. Finally, the hardware-level proof uses the functional-physical simulation
proof technique, which supports proofs of IPR using refinement relations even when there
isn’t a one-to-one correspondence between state machine steps.

4.3.1 Transitivity

Figure 4-6 illustrates the transitivity of IPR. We first formalize the composition of drivers,
denoted as d1 ◦ d2, as inlining an invocation of the lower-level driver wherever the higher-
level driver issues a Call:
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M1

I1 / O1

d12

I2 / O2

M2

I1 / O1

e21

I2 / O2

≈
M2

I2 / O2

d23

I3 / O3

M3

I2 / O2

e32

I3 / O3

≈

M1

I1 / O1

d12 ∘ d23

I3 / O3

M3

I1 / O1

e32 ∘ e21

I3 / O3

≈

∧

Figure 4-6: Inference rule illustrating the transitivity of IPR. The drivers and emulators
compose when relatingM1 toM3.

1 Fixpoint inline_calls {I1 O1 I2 O2 T : Type}

2 (p : dproc I2 O2 T)

3 (d1 : driver I1 O1 I2 O2) : dproc I1 O1 T :=

4 match p with

5 | Call i => d1 i

6 | Ret v => Ret v

7 | p1 >>= p2 => x <- inline_calls p1 d1; inline_calls (p2 x) d1

8 | While g b => While (inline_calls g d1) (inline_calls b d1)

9 | p1 || p2 => inline_calls p1 d1 || inline_calls p2 d1

10 end.

11

12 Definition driver_compose {I1 O1 I2 O2 I3 O3 : Type}

13 (d1 : driver I1 O1 I2 O2)

14 (d2 : driver I2 O2 I3 O3) : driver I1 O1 I3 O3 :=

15 fun i3 => inline_calls (d2 i3) d1.

Using this, we can formalize transitivity of IPR, the formal definition corresponding to
figure 4-6:
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1 Theorem IPR_by_transitivity :

2 forall (I1 O1 I2 O2 I3 O3 : Type)

3 (M1 : machine I1 O1) (M2 : machine I2 O2) (M3 : machine I3 O3)

4 (d12 : driver I1 O1 I2 O2) (d23 : driver I2 O2 I3 O3),

5 IPR M1 M2 d12 ->

6 IPR M2 M3 d23 ->

7 IPR M1 M3 (driver_compose d12 d23).

This proof technique for IPR constructs an emulator between M1 and M3 implicitly,
using the emulators betweenM1 /M2 andM2 /M3.

Proof sketch. Figure 4-7 illustrates the proof of transitivity of IPR, which uses a series of
equivalences between hybrid machines. Equation (1) uses a lemma that driver_compose
corresponds to the composition of add_driver: that adding a single composed driver d12◦d23
to a state machine is equivalent to nested calls to add_driver to add the two drivers to the
state machine one on top of another. Equation (2) uses a lemma that wrapping equivalent
state machines with add_driver produces equivalent state machines; the inner machines
here are equivalent according to the first hypothesis of the transitivity property. Equation
(3) uses a lemma that add_driver and add_emulator commute. Equation (4) is analogous
to equation (2), using a lemma that wrapping equivalent state machines with add_emulator

produces equivalent state machines; the inner machines here are equivalent according to
the second hypothesis of the transitivity property. Equation (5) is analogous to equation (1),
using a lemma that emulator composition corresponds to the composition of add_emulator.
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(1) (2)
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Figure 4-7: The IPR transitivity proof uses a series of equivalences using four hybrid ma-
chines.

4.3.2 Equivalence

Figure 4-8 illustrates IPR by equivalence, where two state machines that are equivalent
have an IPR between them with the identity driver.

1 Definition identity_driver (I O : Type) : driver I O I O :=

2 fun i => (Call i).

3

4 Theorem IPR_by_equivalence :

5 forall I O (M1 M2 : machine I O),

6 equivalent M1 M2 ->

7 IPR M1 M2 (identity_driver I O).

This proof technique for IPR does not require the user to supply an emulator; instead,
the proof uses an identity emulator.
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I / O
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Figure 4-8: IPR by equivalence: state machines that are equivalent have an IPR between
them with the identity driver.

4.3.3 Lockstep

The lockstep proof strategy applies when there is a one-to-one relationship between steps
of an implementation state machine and a specification state machine. In this case, the
driver takes on a simplified form, composed of encode/decode functions describing how
input/output types are converted.

1 Variable I1 O1 I2 O2 : Type.

2

3 Variable encode_input : I2 -> I1.

4 Variable decode_output : O1 -> O2.

5

6 Definition lockstep_driver : driver I1 O1 I2 O2 :=

7 fun i2 =>

8 o1 <- Call (encode_input i2);

9 Ret (decode_output o1).

The lockstep proof strategy implicitly constructs an emulator based on user-supplied
encode/decode functions that are duals of those comprising the driver:
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1 Variable decode_input : I1 -> option I2.

2 Variable encode_output : option O2 -> O1.

The decode_input function produces an option-typed output to allow for low-level in-
puts that do not correspond to any high-level input. The encode_output function consumes
an option-typed input to support producing low-level outputs for the situation where there
is no valid high-level input and hence no valid high-level output. Given such functions, the
emulator is defined as follows:

1 Definition lockstep_emulator : emulator I2 O2 I1 O1 :=

2 {|

3 estate := unit;

4 einit := tt;

5 estep :=

6 fun i1 => match decode_input i1 with

7 | Some i2 => o2 <- Call i2; ERet (encode_output (Some o2))

8 | None => ERet (encode_output None)

9 end;

10 |}.

The lockstep proof strategy requires supplying the encode/decode functions (which im-
plicitly defines an emulator), proving a correspondence between encoders and decoders,
finding a refinement relation between machine states, and showing a property similar to
forward simulation [74] which we call lockstep simulation, which together imply IPR:
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1 Variable M1 : machine I1 O1.

2 Variable M2 : machine I2 O2.

3

4 Variable R : M1.(state) -> M2.(state) -> Prop.

5

6 Theorem IPR_by_lockstep :

7 no_reset M1 ->

8 no_reset M2 ->

9 total M1 ->

10 deterministic M2 ->

11 (forall i2, decode_input (encode_input i2) = Some i2) ->

12 (forall o2, decode_output (encode_output (Some o2)) = o2) ->

13 R M1.(init) M2.(init) ->

14 (forall s1 s2 i1 o1 s1',

15 R s1 s2 ->

16 M1.(step) s1 i1 (Result o1 s1') ->

17 match decode_input i1 with

18 | Some i2 => exists o2 s2',

19 M2.(step) s2 i2 (Result o2 s2') /\

20 R s1' s2' /\

21 o1 = encode_output (Some o2)

22 | None => o1 = encode_output None /\

23 s1' = s1

24 end) ->

25 IPR M1 M2 lockstep_driver.

The theorem requires some additional conditions to hold on M1 and M2: neither can
have reset behavior,M1 must be total, andM2 must deterministic. Figure 4-9 illustrates the
key property of lockstep simulation betweenM1 andM2.

59
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s1’

s2’
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i1 o1

i2 o2

decode_input

encode_output

(a) Lockstep simulation (Some case): if s1
steps to s′1 with input i1 and output o1, and
decode_input i1 = Some i2, then it must be pos-
sible for any s2 related byR to s1 to step with in-
put i2 and some output o2 to an s′2 that’s related
byR to s′1 such that encode_output (Some o2) =
o1.

s1

s2

R

s1’

R
i1 o1

⊥
decode_input

encode_output

(b) Lockstep simulation (None case): if s1
steps to s′1 with input i1 and output o1, and
decode_input i1 = None, then it must be the
case that encode_output None = o1 and for any
s2 related by R to s1, s2 must also be related by
R to s′1.

Figure 4-9: Lockstep simulation, for the case where the low-level input corresponds to some
high-level input (a) or none (b).

4.3.4 Functional-physical simulation

Functional-physical simulation is a generalization of forward simulation [74] that supports
separately reasoning about high-level inputs and sequences of low-level inputs, when there
exists a refinement relation between the implementation machine and specification ma-
chine that holds only in the high-level mode of the real/ideal worlds and after reset but
not in between low-level steps. This proof technique for IPR requires the user to explicitly
construct and pass in an emulator.

Functional simulation, reasoning about individual high-level inputs, is formalized as
follows:
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1 Variable I1 O1 I2 O2 : Type.

2 Variable M1 : machine I1 O1.

3 Variable d : driver I1 O1 I2 O2.

4 Variable M2 : machine I2 O2.

5

6 Variable R : M1.(state) -> M2.(state) -> Prop.

7

8 Definition functional_simulation : Prop :=

9 (* R holds on initial state *)

10 R M1.(init) M2.(init) /\

11 (* R is preserved by reset *)

12 (forall s1 s2 s1',

13 R s1 s2 ->

14 M1.(reset) s1 s1' ->

15 R s1' s2) /\

16 (* at least one driver execution terminates *)

17 (forall s1 s2 i2,

18 R s1 s2 ->

19 exists o2 s1',

20 dexec (mux M1) _ (d i2) s1 (Result o2 s1')) /\

21 (* driver output matches spec, and R holds *)

22 (forall s1 s2 i2 o2 s1',

23 R s1 s2 ->

24 dexec (mux M1) _ (d i2) s1 (Result o2 s1') ->

25 exists s2', M2.(step) s2 i2 (Result o2 s2') /\ R s1' s2').

Figure 4-10 illustrates the last conjunct, the core of the functional simulation defini-
tion, which states that there must be a correspondence between driver executions and the
specification’s high-level input-output behavior.

s1

s2

R

s1’

s2’

R
d[i2] ⇒ o2

i2 o2

. . .

Figure 4-10: Functional simulation: if s1 steps to s′1 through the interaction of the driver d
running on high-level input i2 that produces output o2, then it must be possible for any s2
related by R to s1 to step with the input i2 to produce output o2 and a final state s′2 that is
related by R to s′1.

Physical simulation reasons about sequences of low-level inputs, where a refinement
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relation holds only at the start of the simulation and after a reset.

1 Definition io_to_machine_trace (io : list (I1 * O1)) : trace I1 O1 :=

2 map (fun '(i, o) => IO i o) io.

3

4 Definition io_to_ideal_machine_trace (io : list (I1 * O1)) :

5 trace (I2 + I1) (O2 + O1) :=

6 map (fun '(i, o) => IO (inr i) (inr o)) io.

7

8 Definition physical_simulation : Prop :=

9 exists (e : emulator I2 O2 I1 O1),

10 forall s1 s2 io s1' s1'',

11 R s1 s2 ->

12 execution M1 s1 (io_to_machine_trace io) s1' ->

13 M1.(reset) s1' s1'' ->

14 exists s2' e2',

15 execution (add_emulator' M2 e) (EmulatorHigh s2)

16 (io_to_ideal_machine_trace io) (EmulatorLow s2' e2') /\

17 R s1'' s2'.

Figure 4-11 illustrates the definition, which states that there must be a correspondence
between the implementation’s low-level input-output behavior and emulator execution.
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Figure 4-11: Physical simulation: if s1 steps by a sequence of inputs i(1)1 , i
(2)
1 , . . . , i

(n)
1 produc-

ing outputs o(1)1 , o
(2)
1 , . . . , o

(n)
1 to a state s′1 and resets to state s′′1, then it must be possible for

any s2 related by R to s1 to step, through the interaction of the emulator e running on the
low-level inputs that produces matching low-level outputs, to a final state s′2 that is related
by R to s′′1.

Finally, we can state the theorem that states that IPR is implied by functional simulation
and physical simulation:
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1 Definition resettable {I O : Type} (M : machine I O) :=

2 forall s, exists s', M.(reset) s s'.

3

4 Theorem IPR_by_functional_physical_simulation :

5 total M1 ->

6 deterministic M2 ->

7 resettable M1 ->

8 no_reset M2 ->

9 functional_simulation ->

10 physical_simulation ->

11 IPR M1 M2 d.

This theorem requires some additional conditions to hold on M1 and M2: M1 must be
total, M2 must be deterministic, M1 must be possible to reset, and M2 must not have reset
behavior.

4.4 Limitations

Randomness. The formalization of IPR presented in this thesis does not support random-
ness, so Parfait cannot be used to verify HSMs that use true random number generators
(TRNGs). Karatroc [120] extends IPR with support for randomness.

While state machines, and therefore specifications, can be nondeterminstic, it is not a
substitute for support for randomness, because it’s possible to leak information through
nondeterminism. In practice, our specifications are deterministic, to enable easier auditing
and because we don’t need nondeterminism.

As an alternative to randomness, HSMs can use cryptographically-secure pseudo-random
number generators (CSPRNGs), and this fits into IPR, because IPR supports internal state.
The specification can internally use a CSPRNG, the spec can be augmented to expose an
operation to add entropy to the CSPRNG, and this operation can be called by the host at
device initialization time (and again at any time later) to seed the random number genera-
tor. IPR ensures that the CSPRNG’s internal state cannot be leaked by the implementation.
The Parfait ECDSA HSM uses this approach to compute the signature nonce.

Emulator efficiency. To meaningfully apply IPR to specifications that involve cryptogra-
phy, the adversary must be efficient, and therefore, the emulator must be efficient as well.
Without an efficiency requirement, an implementation that, for example, leaks an RSA sign-
ing key, could be justified by an emulator that calls the specification to get the public key,
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factors products of large primes in exponential time to compute the private key, and then
perfectly mimics the physical interface because it has determined the implementation’s in-
ternal state.

The emulator must satisfy a coarse-grained notion of efficiency: being prohibited from
performing exponential-time computation and brute-forcing secrets. Without an efficiency
requirement, IPR captures an information-theoretic notion of information preservation,
rather than a computational one.

The Parfait framework does not fully formalize or mechanically verify emulator effi-
ciency. Instead, the proofs rely on a manual audit of the emulator code. Most emulators
are constructed implicitly by the IPR proof techniques; the emulators we construct directly
(section 6.3) are simple, so the efficiency property is easy to check. In fact, the Parfait emu-
lators in our case studies satisfy a stricter definition of efficiency than necessary — per cycle
of the circuit that they emulate, they perform at most one query to the specification and
perform computation roughly equivalent to what the circuit does in one cycle — meaning
that an adversary could run the emulator with computational resources equivalent to the
circuit itself.
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Chapter 5

Verifying IPR for software with Starling

Parfait and its Starling framework support the application developer in implementing the
HSM software and proving IPR between the specification and the assembly-level code. A
key challenge in the software verification component of Parfait is minimizing proof effort
and enabling reuse of existing specifications, implementations, and proofs. Building on top
of existing verified software is a challenge because these libraries are focused on verifying
functional correctness, not non-leakage and IPR.

Starling addresses this challenge by encoding the lockstep property, which implies IPR
(section 4.3.3), as a Hoare logic precondition/postcondition. Thanks to this encoding, the
application developer can build on top of existing verified software libraries and their func-
tional correctness proofs, which are themselves written in precondition/postcondition style.

Figure 5-1 shows the software verification component of Parfait’s overall verification
approach (figure 3-3). The application software proof consists of three refinements be-
tween four levels of abstraction: from the top-level functional specification in F? [102]
(section 5.1), to the implementation in Low? [94] (section 5.2), to its extraction to C,
to its compilation to assembly (section 5.3). With the support of Parfait’s Starling frame-
work, the app developer proves that the Low? implementation satisfies the lockstep prop-
erty with respect to the functional specification. The rest of the verification is automated.
KaRaMeL [94] together with the CompCert [67] verified compiler produce an assembly-
level implementation that is equivalent to the Low? implementation; this compilation step
imposes no proof burden on the developer. Parfait’s verified theory of IPR (section 4.3)
shows that lockstep and equivalence imply IPR.
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Figure 5-1: The Parfait software verification approach. The app developer, with the sup-
port of Parfait’s Starling framework, proves the lockstep property between the spec and the
implementation.

5.1 Functional specification

Top-level specifications in Parfait are written in explicit state machine style in F?, satisfying
the spec_t interface shown in figure 5-2. Specifications can use mathematical constructs
such as natural numbers or definitions of elliptic-curve point multiplication. Figure 3-1
shows an example, the step function for the ECDSA signing HSM’s spec.

1 noeq type spec_t = {

2 state_t:Type;

3 command_t:Type;

4 response_t:Type;

5 initial_state:state_t;

6 step:state_t -> command_t -> state_t & response_t;

7 }

Figure 5-2: Encoding of specifications in Starling.

The specification also includes the driver (not shown in figure 3-1), which describes
how spec-level functionality is obtained from interacting with the implementation. Because
there is a one-to-one correspondence between spec steps and implementation steps—one
run of handle maps to one step of the spec step function—the driver is comprised of en-
code/decode functions to (1) serialize the spec-level input (e.g., Sign msg) as a buffer, and
(2) decode the response buffer into a spec-level output (e.g., Signature sig).
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5.2 Implementation and proof

The developer writes the implementation in Low? as a function that mutates fixed-length
buffers: it gets a command and a state buffer along with a pointer to a response buffer, and it
updates the state and produces a response. Parfait interprets the implementation as a state
machine in the formalism of IPR as follows. The state, input, and output types are defined
as fixed-length sequences of bytes, and the handle function (and its interpretation according
to the Low? semantics) defines the step function of the state machine as an atomic step.
Figure 5-3 shows pseudocode that more precisely describes how the metalogical model-
Low? interprets the implementation as a state machine.

1 type state = bytes[STATE_LEN]

2 type input = bytes[COMMAND_LEN]

3 type output = bytes[RESPONSE_LEN]

4

5 def step(state: state, input: input) -> (state, output):

6 m = lowstar_machine("AppImpl.low.fst")

7

8 # copy state and command into machine memory

9 state_ptr = m.alloc(STATE_LEN)

10 m.storebytes(state_ptr, state)

11 command_ptr = m.alloc(COMMAND_LEN)

12 m.storebytes(command_ptr, input)

13

14 # allocate space for response

15 response_ptr = m.alloc(RESPONSE_LEN)

16

17 # run handle function according to LowStar semantics

18 m.invoke("handle", state_ptr, command_ptr, response_ptr)

19

20 # retrieve updated state and result buffer

21 new_state = m.loadbytes(state_ptr)

22 output = m.loadbytes(response_ptr)

23 return (new_state, output)

Figure 5-3: Pseudocode describing how model-Low? interprets the implementation as a
state machine.

The Starling framework encodes the lockstep property (section 4.3.3)—in particular, the
encode/decode correspondences and the lockstep simulation property—into F?, and the app
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developer proves the properties.

Encode/decode correspondences. Starling provides the developer with signatures for
the encode/decode functions for commands and responses, as shown in figure 5-4. The
postconditions on the encode functions ensure that the functions satisfy the correspondence
required for the lockstep property.

1 // encoder of a command into a byte sequence of a given length

2 let command_decoder (len:nat) (command_t:Type) =

3 (s:Seq.seq uint8{Seq.length s = len}) -> option command_t

4

5 // decoder of a command from a byte sequence

6 let command_encoder (#len:nat)

7 (#command_t:Type)

8 (decoder:command_decoder len command_t) =

9 cmd:command_t ->

10 Pure (s:Seq.seq uint8{Seq.length s = len})

11 (requires True)

12 (ensures fun ret -> decoder ret == Some cmd)

Figure 5-4: Starling’s encoding of encode/decode correspondence in F? as a postcondition
on the encoder. The encoding for responses (not shown) is analogous.

Lockstep simulation. Starling encodes lockstep simulation into the signature of the Low?

handle function, handle_st, as shown in figure 5-5. Rather than use a refinement relation
between states, Starling uses a state_encoder function that encodes a spec-level state as
bytes. The handle_st signature is parameterized by a specification and the encode/decode
functions for commands/responses. The function takes as input the state, command, and
response buffers, as well as the spec-level state, supplied as a ghost argument state_spec.
The precondition states that the state and state_specmust correspond. The postcondition
encodes the lockstep simulation condition (illustrated in figure 4-9), decoding the low-level
input command into the spec-level cmd_spec and handling both the case of valid low-level
input (cmd_spec = Some v, corresponding to figure 4-9a) and the case of invalid low-level
input (cmd_spec = None, corresponding to figure 4-9b).

Informally, relating the handle function back to the spec step function while ensuring
non-leakage establishes two properties, ensured by the combination of (1) the encode/de-
code correspondences, and (2) the postcondition on handle, which are:
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1 let state_encoder (len:nat) (state_t:Type) (initial_state:state_t) =

2 (st:state_t) -> (s:Seq.seq uint8{Seq.length s = len})

3

4 inline_for_extraction

5 let handle_st

6 (spec: spec_t)

7 (#state_len:nat) (#command_len:nat) (#response_len:nat)

8 (encode_state:state_encoder state_len spec.state_t spec.initial_state)

9 (#decode_command:command_decoder command_len spec.command_t)

10 (encode_command:command_encoder decode_command)

11 (#decode_response:response_decoder response_len spec.response_t)

12 (encode_response:response_encoder decode_response) =

13 state:B.buffer uint8{B.length state = state_len}

14 -> state_spec:erased spec.state_t

15 -> command:B.buffer uint8{B.length command = command_len}

16 -> response:B.buffer uint8{B.length response = response_len} ->

17 Stack unit

18 (requires fun h -> ... /\ encode_state state_spec == B.as_seq h state)

19 (ensures fun h0 () h1 -> ... /\

20 (let cmd_spec = decode_command (B.as_seq h0 command) in

21 match cmd_spec with

22 | Some v -> let (state_spec_final, resp_spec) = spec.step state_spec v in

23 encode_state state_spec_final == B.as_seq h1 state /\

24 encode_response (Some resp_spec) == B.as_seq h1 response

25 | None -> B.as_seq h1 state == B.as_seq h0 state /\

26 encode_response None == B.as_seq h1 response))

Figure 5-5: Starling’s encoding of lockstep simulation in F? as the signature of handle.

• When the command can be decoded as a spec-level command (i.e., not None), then
the behavior matches the spec: the final state, when decoded, matches the final spec
state, and encoding the spec-level response matches the value in the response buffer.
This rules out encodings that leak information: encode_response is a deterministic
function of only the spec-level response, and the buffer contents are equal to this,
capturing non-leakage.

• When the command cannot be decoded as a spec-level command (i.e., None),
then the state remains unchanged, and the response is deterministic, as given by
encode_response None. A client that never supplies bad inputs will never observe
this, but a client that does supply bad inputs will learn no information. This, along
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with Low?’s other properties, such as verifying memory safety, ensures that even bad
inputs (e.g., trying to trigger a buffer overflow) cannot corrupt the state or leak infor-
mation.

The application developer proves that their implementation of handle satisfies handle_st,
parameterized by the spec and encode/decode functions for commands/responses, which
proves the lockstep property between implementation and specification. Starling’s encod-
ing of lockstep into a precondition/postcondition in handle_st enables building on top of
existing proofs of correctness; for example, our ECDSA signing implementation builds on
top of both the implementations and proofs of ECDSA from HACL? [122].

5.3 Assembly-level implementation and proof

Parfait compiles Low? to assembly code using a stack of verified compilers. KaRaMeL [94]
compiles Low? code to C. KaRaMeL theorems establish that safety and functional correct-
ness verified at the F? level translate to generated CompCert Clight code. Parfait then
uses the formally-verified CompCert compiler to generate an assembly implementation of
the handle function that follows the RISC-V calling convention, expecting pointers to the
state, command, and response buffers in the a0, a1, and a2 registers.

Parfait uses CompCert’s RISC-V backend and dumps the AST of the last verified pass
of the compiler, called Asm (after which the compiler usually runs un-verified expansion,
assembly, and linking). The Asm machine model still uses CompCert’s structured memory
model and has pseudo-instructions for allocating and freeing stack frames.

Figure 5-6 describes how model-Asm (CompCert) interprets the Asm as a state machine
using the CompCert semantics, where the invocation of handle is treated as a single atomic
step of the state machine, analogous to model-Low? (figure 5-3). The step function takes
as inputs a state buffer and command buffer and returns a new state buffer and response
buffer as outputs.

The C code has two interpretations as a state machine, one according to KaRaMeL C
semantics, and another according to the CompCert C semantics. To relate the Low? level to
the C level with IPR, and to relate the C level to the Asm level with IPR, Parfait leverages the
fact that all of the induced state machines are equivalent, which implies IPR (section 4.3.2).
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1 type state = bytes[STATE_LEN]

2 type input = bytes[COMMAND_LEN]

3 type output = bytes[RESPONSE_LEN]

4

5 def step(state: state, input: input) -> (state, output):

6 m = compcert_asm_abstract_machine("AppImpl.asm.json")

7

8 # copy state and command into machine memory

9 state_ptr = m.alloc(state_len)

10 m.storebytes(state_ptr, state)

11 command_ptr = m.alloc(command_len)

12 m.storebytes(command_ptr, input)

13

14 # allocate space for response

15 response_ptr = m.alloc(response_len)

16

17 # set up arguments following RISC-V ABI

18 m.regs["a0"] = state_ptr

19 m.regs["a1"] = command_ptr

20 m.regs["a2"] = response_ptr

21

22 # run handle function according to CompCert Asm semantics

23 m.regs["pc"] = m.address_of("handle")

24 m.run()

25

26 # retrieve updated state and result buffer

27 new_state = m.loadbytes(state_ptr)

28 output = m.loadbytes(response_ptr)

29 return (new_state, output)

Figure 5-6: Pseudocode describing how model-Asm (CompCert) interprets the CompCert
Asm as a state machine according to the CompCert RISC-V Asm semantics.
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5.4 Discussion

Parfait’s software verification approach minimizes developer effort. Starling enables the
developer to prove IPR using F? and Low?, standard software verification tools with a
rich ecosystem of compiler and IDE support, which are designed for verifying C-like code.
Parfait’s IPR-by-lockstep proof technique and Starling’s encoding of lockstep as a Hoare
logic precondition/postcondition enable reusing and building on top of existing specifica-
tions, implementations, and proofs from verified libraries like HACL?, as we demonstrate
in chapter 8. Parfait’s IPR-by-equivalence proof technique and use of existing verified com-
pilers to produce the assembly-level implementation further minimizes developer effort.

5.5 Limitations

KaRaMeL semantics are intended to coincide with CompCert C, but there is no mechanized
connection between the two. Parfait assumes that the induced state machines (frommodel-
C (KaRaMeL), interpreting the code according to the KaRaMeL C semantics, and model-C
(CompCert), interpreting the code according to the CompCert C semantics) are behaviorally
equivalent. Parfait does not need to assume that the semantics perfectly coincide (e.g.,
stepwise correspondence between the semantics), only that the induced state machines
coincide, which boils down to assuming that that the final values computed/transformed by
the handle function match between the two semantics. Additionally, unlike the CompCert
compiler, KaRaMeL is only partially verified, and on-paper, rather than with a mechanically-
checked proof of correctness.
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Chapter 6

Verifying IPR for hardware with Knox

Parfait and its Knox framework support the platform developer in implementing the HSM
hardware and proving IPR between the assembly-level code and its circuit-level execution.
Knox addresses two key challenges, both related to the tractability of verification and mini-
mizing developer effort. The first challenge is bridging the large gap between assembly-level
execution, where there is no notion of timing, and the cycle-precise execution at the circuit
level, with reasonable proof effort. The second challenge is modularity, separating the soft-
ware proof from the hardware proof, so the platform developer doesn’t need to understand
the software and its proof, and vice versa. Knox addresses these challenges with automa-
tion, leveraging symbolic execution, satisfiability modulo theories (SMT) solvers, and novel
performance optimization techniques.

Figure 6-1 shows the hardware verification component of Parfait’s overall verification
approach (figure 3-3), where the developer proves the final IPR between assembly-level im-
plementation and the system-on-a-chip (SoC) using the Knox framework. This framework
builds on hybrid symbolic execution [104] and SMT solvers to help the developer prove the
functional-physical simulation property (section 4.3.4) between the Asm level and the SoC.
Knox provides a symbolically-executable semantics for the Asm (section 6.1) and SoC (sec-
tion 6.2) levels, languages and semantics for writing drivers and emulators (section 6.3),
and proof checkers for functional simulation and physical simulation (section 6.4).
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Figure 6-1: The Parfait hardware verification approach. The platform developer, with the
support of Parfait’s Knox framework, proves the functional-physical simulation property be-
tween the Asm level and the SoC.

6.1 Assembly-level implementation

Parfait generates the assembly-level implementation App Impl [Asm] using the CompCert
compiler, which is written in Coq. CompCert includes a (non-executable) Coq semantics
of RISC-V assembly. However, Knox is written using Rosette, a symbolic evaluation library
for the Racket programming language. For this reason, on top of Rosette, Knox provides
its own executable semantics for CompCert RISC-V assembly, which we call Riscette. This
executable semantics closely follows the original CompCert semantics. Furthermore, the
Riscette semantics can be single-stepped instruction-by-instruction, for proof purposes.

With this semantics in place, Knox can initialize an abstract machine from assembly code
emitted by the CompCert compiler, set up the machine memory and registers to supply a
state and input to the handle function, and symbolically execute it to produce a final state
and an output, similar to how figure 5-6 describes the assembly level’s interpretation as a
state machine following CompCert semantics.

6.2 Hardware-level implementation

Parfait generates the complete system-on-a-chip using the Yosys synthesis tool; to reason
about the circuit in Knox, the framework includes the Rosys tool, which converts the circuit
to a symbolically-executable state-machine representation in Rosette. Given a circuit, Rosys
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emits:

• An input type, with fields for all input wires to the circuit
• An output type, with fields for all output wires from the circuit
• A state type, with fields for all registers andmemories of the circuit, as well as current

inputs
• A function set-input : state× input → state, to set the values on the input wires
• A function tick : state → state, to execute the circuit for a single clock cycle
• A function get-output : state → output, to get the values on the output wires

Knox relates this Rosys-generated state machine representation of the hardware to the
Riscette-generated state machine representation of the assembly-level implementation to
prove functional-physical simulation between the two.

6.3 Drivers and emulators

Knox includes languages (and associated semantics) to allow the developer to encode drivers
and emulators in the framework.

Driver. The language design and semantics of the driver closely follow the Coq formaliza-
tion of drivers (section 4.2.2). Because the language is meant to be used for writing drivers
for circuits, instead of supporting a general-purpose Call, it instead exposes set-input,
tick, and get-output directly. Furthermore, instead of supporting the full generality of
Choose, the language has a yield primitive, to model the host yielding and letting the cir-
cuit execute for an arbitrary number of cycles—this is useful when modeling asynchronous
protocols such as UART.

Figure 6-2 shows an example of a driver for a circuit that communicates over UART: this
driver describes how “spec-level operations” (i.e., operations at the level of the assembly-
level implementation) translate to wire-level I/O. Specifically, the driver describes how the
handle function, which takes as input a fixed-length sequence of bytes and returns as out-
put a fixed-length sequence of bytes, is implemented in terms of set-input, tick, and
get-output. This driver also demonstrates the use of the yield primitive, modeling the
host waiting for an arbitrary number of cycles between sending bytes, as is allowed in the
asynchronous UART protocol.

Emulator. The language design and semantics of the emulator closely follow the Coq
formalization of emulators (section 4.2.3).
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1 (define (handle command-bytes)

2 (send-bytes command-bytes) ; send command

3 (recv-bytes RESPONSE-LEN)) ; read response

4

5 (define (wait-until-clear-to-send)

6 (while (get-output 'rts))

7 (tick))) ; wait a cycle

8

9 (define (send-bit bit)

10 (set-input 'rx bit)

11 (for ([i (in-range BAUD-RATE)])

12 (tick)))

13

14 (define (send-byte byte)

15 (wait-until-clear-to-send)

16 (send-bit #b0) ; send start bit

17 ;; send data bits

18 (for ([i (in-range 8)])

19 (send-bit (extract-bit byte i)))

20 (send-bit #b1)) ; send stop bit

21

22 (define (send-bytes bytes)

23 (for ([byte bytes])

24 (yield) ; wait for arbitrary number of cycles

25 (send-byte byte)))

Figure 6-2: A code snippet from a driver for a circuit that communicates over UART. The
function corresponding to a spec-level operation (handle) is shown in blue. Driver-language
primitives are in red.

Parfait provides a strategy that is effective for constructing emulators for the circuit level
of abstraction. The emulator runs a fresh instance of the circuit, with dummy data. The
emulator does not have access to the data in the real circuit, in particular the read-write
persistent memory, but the structure of the circuit and the code in the ROM is common
knowledge. The emulator carefully watches the internal state of its instance of the circuit:
when the circuit reaches the commit point of an operation, the emulator reads input data
out of its circuit’s state and translates it into a spec-level input, makes a query to the specifi-
cation, and injects the result back into its circuit’s state, so that the (future) output behavior
of its circuit instance matches that of the real circuit. For HSMs that follow the Parfait de-
sign, the commit point is the (cycle-level) commit point of the store_state function in the
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system software (figure 3-4).
Because all of our emulators follow this construction, for convenience, the language

semantics has built-in support for constructing a fresh instance of the circuit, reading and
writing the instance’s state, and executing it for a clock cycle.

6.4 Proof

The developer supplies the driver, an emulator, and a refinement relation relating assembly-
level state (a sequence of bytes) to implementation-level state (registers and memories in
the circuit). Parfait HSM implementations use a simple journaling strategy for crash safety,
using a flag word and toggling between two regions of persistent memory. Figure 6-3 shows
a refinement relation for such an implementation.

Inv(impl) ∧ spec = if impl.mem[0] == 0

then impl.mem[1 : STATE_LEN+ 1]
else impl.mem[STATE_LEN+ 1 : 2× STATE_LEN+ 1]

Figure 6-3: An example of a refinement relation between assembly-level implementation
(the spec at this level) and circuit impl. impl.mem refers to the persistent memory of the
implementation. Inv is an invariant on circuit state that holds in between spec-level oper-
ations, not shown here.

Using this, Knox proves functional simulation (figure 4-10) and physical simulation
(figure 4-11) between the assembly-level implementation and the circuit. Knox includes
techniques to handle the challenges that arise when applying symbolic execution and SMT
solvers to proving functional and physical simulation. In functional simulation proofs, Knox
handles the nondeterminism of yield in drivers by automatically finding fixed points (sec-
tion 6.4.1). In physical simulation proofs, Knox supports reasoning about unbounded-
length inputs using an approach we call guided symbolic model checking (section 6.4.2).
For both, Knox includes performance optimizations: automatic state synchronization be-
tween assembly and circuit to make SMT queries tractable (section 6.4.3), and support for
untrusted hints supplied by the proof developer to optimize performance (section 6.4.4).

6.4.1 Nondeterminism

Knox verifies the functional simulation property using symbolic execution of the driver-
language program against the HSM implementation, comparing the execution of the driver/cir-
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cuit with the assembly-level implementation. However, symbolic execution cannot directly
handle the nondeterminism of yield, which has the semantics of the driver waiting for an
arbitrary number of cycles while the HSM runs.

Knox addresses this by finding a fixed point of the circuit’s step function at every yield
point. During symbolic execution, the circuit’s state is a symbolic term. Stepping the circuit
produces a new symbolic term, and so on. At yield points, Knox computes a set of symbolic
terms such that the set is closed under the circuit’s step function, and it forks symbolic
execution for each term in the set.

Closure is defined in terms of symbolic state subsumption. A symbolic term t under a
path condition p, written as t|p, can be thought of as representing a set of concrete values,
Jt|pK, the set of values that t can evaluate to for all possible assignments satisfying p of
values to t’s symbolic variables. A term t1 under path condition p1 is subsumed by a term t2

under path condition p2, written as t1|p1 ⊆ t2|p2, if Jt1|p1K ⊆ Jt2|p2K. For a set S of symbolic
terms paired with path conditions, let JSK = {Jt|pK : t|p ∈ S}. Finally, call S a fixed point of
the step function if ∀x ∈ JSK, step (x) ∈ JSK.

Knox includes an efficient algorithm for subsumption checks, and fixed points are found
through iteratively calling the step function on the symbolic circuit state to build up a set
of symbolic terms. Once a fixed-point S is found, symbolic execution proceeds for each of
the t|p ∈ S, similar to how branching produces multiple paths to be checked.

Left unchecked, multiple yields can result in an exponential number of cases to check,
analogous to the problem of branching resulting in path explosion in symbolic execution.
For this reason, Knox uses untrusted merge hints in the driver at points where some branches
could be merged together. At merge points, Knox uses subsumption checks to automatically
find a smaller set of symbolic terms |S ′| ≤ |S| that still represent all the concrete values
included in the original, JSK ⊆ JS ′K, which addresses case explosion.

6.4.2 Unbounded-length inputs

In Knox, emulators can be symbolically executed with black-box query access to a functional
specification. Unlike the functional simulation property which considers a single (spec-
level) input, the physical simulation property considers an arbitrary-length sequence of
(wire-level) inputs, so Knox can’t prove the physical simulation property in the same way.
Symbolic execution could verify this property for a fixed-length input, but it cannot directly
handle arbitrary-length input.

The standard approach to handling arbitrary-length inputs is to write down an inductive
invariant and reason about one step at a time. This approach does not work for large circuits
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.   .   .

subsumed

Figure 6-4: An illustration of guided symbolic model checking exploring a state space. Each
green circle is a symbolic term representing a set of states. Black arrows show step invo-
cations and purple arrows show subsumed invocations.

because of the infeasibility of manually writing down the inductive invariant. It would have
to include an invariant of circuit execution, capturing which states are reachable and which
are not, and it is infeasible to manually write down exactly how CPU microarchitectural
registers, peripheral registers, RAM state, etc. are related to each other at every cycle of
execution of the software.

Instead, Knox uses an approach that we describe as guided symbolic model checking. At a
high level, Knox uses a model-checking-style approach to start from the initial states of the
circuit and emulator in the definition of physical simulation, explore all reachable states,
and ensure that the circuit’s behavior matches the emulator’s behavior and the recovery
condition holds at every step. Exploration starts out at a circuit state c1, an emulator state e0
(the initial emulator state), and functional spec state f1, where both f1 and c1 are symbolic
terms, and a refinement relation R is assumed to relate f1 and c1. Knox can step the circuit
and step the emulator, given the same symbolic input, and check that their outputs match.
Knox repeats this process until it has explored all reachable states.

This model-checking process involves guidance from the developer in the form of a proof
script. Knox provides two primitives that allow the developer to guide exploration of the
state space:

• step steps the circuit and the emulator/spec (with the same symbolic input) for one
cycle and verifies the output equivalence and recovery properties for that single cycle

• subsumed checks that the state currently under consideration is subsumed by a state
that was explored earlier, “tying the knot” and finishing a branch of the exploration

Figure 6-4 illustrates how step and subsumed let the developer guide themodel checker
to explore the state space. In addition to these primitives, the developer uses additional
hints (section 6.4.4) to safely manipulate symbolic terms and help the model checker effi-
ciently explore the state space.
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An alternative view of this process is that it incrementally builds up the induction hy-
pothesis that would have been used in an induction-based approach. Once model checking
has explored all reachable states, it has visited a set of states S that includes the initial
circuit/emulator/spec state where R holds, and the set S has the property of being closed
under the circuit/emulator step functions, and the property of matching outputs for a sin-
gle cycle holds for every state in S. The induction hypothesis is that the state is contained
in S.

The proof script is untrusted, and Knox checks that the state space is fully explored. At
worst, an incorrect proof script can result in poor performance or Knox reporting that the
state space has not been fully explored.

6.4.3 State synchronization

A key challenge for Knox’s functional-physical simulation proof is that, in practice, SMT
solvers are unable to prove the equivalence of assembly-level and circuit-level executions
after many cycles of execution. In particular, for sophisticated applications like Parfait’s
ECDSA HSM, the app assembly code can take tens of millions of instructions to execute
in the SoC, corresponding to a single “step” of the assembly-level specification state ma-
chine (section 6.1). The functional-physical simulation proof involves showing that the app
assembly transforms the state/command buffers in a way that corresponds with how the
SoC hardware updates its buffers. While Knox can symbolically execute both the spec and
the implementation, and express this correspondence, SMT solvers are unable to directly
prove equivalence of how these buffers are transformed, because the symbolic expressions
describing the two are extremely complicated, and not identical.

Instead of waiting to prove equivalence of final states/outputs at the end of executing
an entire HSM operation, Knox uses a strategy of incrementally executing the spec and pe-
riodically synchronizing the spec and implementation. Although the app assembly level is
modeled as a whole-command state machine that executes a command in a single transi-
tion, Riscette computes that transition by symbolically executing instruction-by-instruction.
Knox makes use of this per-instruction stepping to simplify equivalence checking. When the
hardware is in the middle of executing the handle function, there’s a close correspondence
between the hardware’s cycle-by-cycle execution and single-stepping through CompCert
Asm-level instructions.

To do this synchronization, Knox uses a mapping from CompCert Asm abstract machine
state to hardware-level state (registers and memories) provided by the platform developer.
During the proof, Knox applies this mapping to line up the states and attempts to prove
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equivalence component-wise. If the equivalence check succeeds, it replaces both symbolic
expressions with the same symbolic variable. This way, the solver does not get a large
hard-to-prove query at the end of execution. Instead, it proves many simpler equivalences
throughout the execution. Knox has built-in heuristics for when to synchronize, and for
what should be synchronized in which situations.

Knox uses a “best effort” strategy for synchronization. Occasionally the developer-
provided mapping or heuristics for alignment are not quite right and an equivalence check
fails. When this happens, Knox does not unify the symbolic expressions. Instead, it contin-
ues symbolically executing and tries to check for equivalence later. The result is that the
solver might end up with a slightly harder query at the next synchronization point.

Synchronization for the Ibex SoC. The remainder of this section describes in more detail
the mapping and synchronization heuristics, using the platform mapping for the Ibex-based
SoC used in one of our case studies (chapter 8) as an example.

State correspondence. The platform developer supplies the correspondence between the
CompCert Asm abstract machine state (fixed by the framework) and the hardware (imple-
mented by the platform developer). As illustrated by examples in figure 6-5, the platform
developer supplies:

• Register mapping: for each architectural register in abstract state, what is the Ver-
ilog register to which it corresponds? For example, in the Ibex processor used in
the case study HSM, x1 corresponds to cpu.gen_regfile_ff.register_file_i.g_rf_

flops[1].rf_reg_q.

• Pointer mapping: for each concrete pointer (e.g., 0x20000008), what is the Verilog
memory and index to which it corresponds? For the Ibex SoC, this pointer maps to
Verilog memory ram.ram, with an offset of 2 words.

• Encoding of next RISC-V instruction, including whether or not this is valid (it may be
invalid if the execute stage of the processor pipeline is stalled). This is what Knox uses
to synchronize execution between Asm and hardware (rather than mapping program
counter addresses). In our case study SoC, the instruction about to be executed by the
ID/EX stage of the pipeline is found in cpu.u_ibex_core.if_stage_i.instr_rdata_

id_o, and the signal that indicates whether this instruction is valid is found in cpu.u_

ibex_core.if_stage_i.instr_valid_id_q.

These mappings are specified in about 10 lines of proof code.
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pc | pointer 1 1

registers
   x1 | 0x3749fa3f
   x2 | pointer 73 0
     ...
  x31 | undef

memory
   1 | func ‘handle’
   2 | func ‘sha256’
    ...
  73 | [0x24, 0x59, 0x09, 0xfa]
  74 | [pointer 4 8, 0x05, 0x06]

code
  handle | [ Pallocframe 16
             Psw x1, x2, 4
             ... ]
  sha256 | [ ... ]
        ...

pc_ex | 0x00000a30

regfile
   0 | 0x00000000
   1 | 0x3749fa3f
   2 | 0x20000008
    ...
  31 | 0xffff000e

CPU

. . .

RAM @ 0x20000000
  0 | 0x00000000
  4 | 0xf3d9ab03
  8 | 0xfa095924
   ...

ROM @ 0x00000000
    0 | 0x0f80006f j f8
     ...
  a28 | 0xff010113 add sp,sp,-16
  a2c | 0x01e12023 sw t5,0(sp)
  a30 | 0x00112223 sw ra,4(sp)
     ...

. . .

CompCert Asm abstract
machine state

SoC circuit state

Figure 6-5: Correspondence between Asm machine state and circuit state. The figure il-
lustrates an example register mapping in green, pointer mapping in red, and instruction
mapping in blue.

Data type correspondence. The Asm model has its own data type of values that are
stored in registers/memory: bitvectors (32-bit words in registers, 8-bit bytes in memory),
pointers (there is a native pointer type in CompCert Asm, they are not just represented
as ints), and undef. In the SoC, everything is a bitvector. Knox synchronizes spec state
registers with circuit state registers as follows:

• Bitvectors: this represents data, and the Asm and hardware are generally lined up,
so these values should be equal; Knox invokes an SMT solver to prove that the spec
register and implementation register have the same value, and replaces both with the
same symbolic variable.

• Pointers: when a spec register has a pointer value, Knox guesses that the value in
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the hardware register is also a pointer, and points to flat memory. In this case, Knox
synchronizes the contents of the memories, and leaves the pointers in the registers un-
touched (a CompCert pointer in the spec, and a 32-bit bitvector in the implementa-
tion). Synchronizing the memory contents is similar to synchronizing registers. Knox
knows the bounds of the allocation thanks to CompCert’s structured memory model.
Knox uses the SMT solver to prove the chunk of memory equal between spec and
implementation, doing this byte-by-byte, and synchronizing values that are equal.

• Undef: when a spec register is undefined, Knox leaves the implementation register
as-is.

All the examples in figure 6-5 are shown with concrete values, but when used in Knox
for verification, most of the registers and memory contain symbolic expressions.

When to synchronize. Because synchronization involves multiple SMT queries, it is too
expensive to do at every cycle; moreover, some CompCert Asm instructions take multiple cy-
cles to execute in SoC hardware. Instead, Knox uses a number of heuristics to decide when
to synchronize, as shown in figure 6-6. Knox watches the instruction being executed in the
spec machine, and the instruction being executed in the implementation machine (thanks
to the developer-written mapping that provides the next-executing instruction). Knox steps
each machine up until the next synchronization point, and then does the synchronization.
In some cases, there’s direct correspondence between Asm instructions and hardware in-
structions, in other cases, it’s a more complex mapping. Figure 6-6 shows CompCert Asm
instructions and their corresponding RISC-V assembly instructions or instruction sequences.
Knox synchronizes either register values only (only the bitvectors, not the memory contents
pointed to by registers containing pointer values), buffer values only, or both, depending
on the kind of synchronization point.
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mv t5, sp
sub sp, sp, #sz
sw t5, #pos(sp)

...

# different code
# based on sz
...
nop

beq rs1, rs2, l

...

mul rl, a, b
mulh rh, a, b

add rd, rs1, rs2

...

Pbuiltin EF_memcpy sz src dst

Pallocframe sz pos

Pfreeframe sz pos

Pbeqw rs1 rs2 l

...

Pbuiltin BI_mull a b rh rl

Paddw rd rs1 rs2

...

CompCert Asm RISC-V assembly

entry/exit
- sync registers
- sync buffers

builtin memcpy
- sync buffers

branch
- sync registers
- sync buffers

arithmetic
- sync registers

Figure 6-6: Knox synchronization points and corresponding actions.

6.4.4 Hints

In both functional simulation proofs and physical simulation proofs, relying only on hybrid
symbolic execution and state synchronization still results in an explosion in term size and
queries that make the SMT solver time out, related to the execution of the system software
by the circuit (execution of handle is not a problem thanks to state synchronization).

Knox addresses this with untrusted (solver-checked) human guidance called hints. Knox
has 8 primitive hints:

• case-split performs case analysis
• concretize invokes the solver to prove that a symbolic term is concrete and replaces

it with the concrete value
• overapproximate replaces a term with a fresh variable
• weaken weakens the current path condition
• replace rewrites or simplifies terms
• remember, substitute, and clear effectively allow marking terms as opaque to

symbolic execution and substituting in their values later
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Furthermore, Knox supports writing higher-level tactics that can reflect on the current
state of symbolic execution and invoke primitive hints (or other tactics). A tactic might, for
example, analyze the state of the circuit to determine if a CPU is about to branch, and in
that situation, it can invoke a case-split hint with the appropriate cases constructed based
on analyzing the symbolic circuit state.

All invocations of hints are verified by the Knox framework with a call to the SMT solver
when necessary. Hints are untrusted: at worst, hints can be incorrect and fail (e.g., when
attempting to replace a term with an unequal term), which will result in an error message
to the user, or the given hints can be inadequate to ensure good performance, in which case
verification will be slow or fail to terminate.

6.5 Discussion

The Parfait approach and Knox framework aim to minimize developer effort to prove IPR.
Knox’s use of symbolic execution and SMT solvers along with Knox’s performance optimiza-
tions allow for bridging the gap directly from assembly-level execution to circuit-level exe-
cution without the need to introduce additional levels of abstraction. Knox doesn’t require
that the developer write an ISA specification, or that the developer verify a processor to be
correct against an ISA specification; this saves considerable effort compared to prior work on
hardware/software verification [40, 42]. Furthermore, thanks to automation, Knox is able
to support the use of off-the-shelf processors that were not purpose-built for verification, as
we demonstrate in chapter 8.

6.6 Limitations

Like the software verification assumes that the KaRaMel C semantics coincide with the
CompCert C semantics (section 5.5), Parfait’s hardware verification assumes that the Comp-
Cert RISC-V Asm semantics coincide with the Riscette semantics. We have written the
Riscette semantics by closely following the CompCert Coq code, so we expect these to align.
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Chapter 7

Implementation

The Parfait framework consists of the three components shown in table 7-1. We have open-
sourced all of these components, along with HSMs verified using Parfait (table 1-1).

Table 7-1: Components that comprise the Parfait framework. The Knox framework includes
Rosys and Riscette. Lines of code counts include tests (for Knox) and proofs (for IPR theory).

Component Language Lines of code

IPR theory Coq [103] 3,000
Starling framework F? [102] 100
Knox framework Racket [43] / Rosette [104] 8,000

Software toolchain. A developer using Parfait writes app specifications in F? and app
implementations in Low?. The developer uses the Starling framework to verify the software
(chapter 5). F? relies on the Z3 SMT solver [79] to discharge verification conditions. Parfait
uses the KaRaMeL compiler [94] to extract Low? to C and the CompCert compiler [67]
to compile C code to RISC-V Asm. Parfait forks the CompCert compiler and adds 450
lines of code to append a nop instruction to compiler-expanded memcpy builtins to aid in
synchronization and to dump the RISC-V Asm AST to a .json file before emitting the final
.s file.

Hardware toolchain. The developer writes the system software in a combination of C
and assembly code, and they write the hardware implementation in Verilog. The developer
uses Knox to verify the hardware (chapter 6). To achieve good performance, Knox imple-
ments a number of techniques beyond those described in this thesis, including symbolic
state serialization, term subsumption, fixpoint finding, state merging, a new algorithm for
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symbolic subsumption checking based on a disjoint-set data structure, and a equivalent-up-
to-renaming query cache in front of the SMT solver that reduces queries by 90%.

Parfait uses GCC [101] to compile the system software and link it with the app assembly
to form the complete firmware binary. Parfait uses the Yosys [113] synthesis tool and its
SMT-LIB backend to dump a .smt2 file. To interpret the app assembly as a state machine,
Riscette reads the CompCert-generated Asm AST JSON dump and produces a deep em-
bedding in Rosette. Riscette implements a single-steppable executable semantics for this
deeply-embedded language. To interpret the circuit as a state machine, Rosys reads the
Yosys-generated SMT-LIB representation, and using a collection of Racket macros, trans-
forms it into a shallow embedding in Rosette.

Knox builds on Rosette, which relies on SMT solvers to discharge verification conditions.
Rosette supports multiple backends; Parfait uses Z3.

Trusted computing base. The trusted computing base (TCB) of the Parfait framework
consists of: (1) the Coq definition of IPR, (2) the Starling framework’s F? encoding of
the lockstep property (needs to match the Coq definition), and (3a) the Knox framework’s
Riscette semantics (needs to match CompCert), (3b) the Knox framework’s Rosys conver-
sion of a circuit (Verilog/software) into Rosette, and (3c) the Knox checker that verifies
that the functional-physical simulation property is satisfied (needs to encode/check the
Coq definition).

Parfait also inherits the TCB of the verification tools it uses: the TCB of Coq (including
the Coq proof checker kernel), the TCB of F? (including the Z3 SMT solver), and the TCB of
Rosette (including the Z3 SMT solver). Parfait inherits the TCB of KaRaMeL and CompCert
because the overall IPR proof relies on the correctness of these compilers. GCC is not part
of the TCB.
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Chapter 8

Verifying HSMs using Parfait

This chapter qualitatively demonstrates that Parfait enables verification of realistic HSM
implementations, ensuring they are free from leakage bugs. We first describe the HSMs
that we have developed on top of Parfait as case studies, and then we discuss how Parfait
catches security bugs that an HSM implementation may have.

8.1 Case studies

We implement HSMs for two applications: ECDSA certificate signing and password hashing.
The software builds on top of specifications, implementations, and proofs for cryptographic
algorithms from the HACL? [122] library. We run these applications on two hardware
platforms: one based on the Ibex processor [72] from the OpenTitan project [73] and one
based on the PicoRV32 processor [114].

Application 1: ECDSA certificate signing. An ECDSA certificate-signing app, described
in figure 3-1, was the running example through this thesis. The complete F? specification
(figure A-1) is about 40 lines of code. The specification uses the HACL? verified cryptogra-
phy library, re-using its specifications of the HMAC-SHA256 and ECDSA-P256 algorithms.
At initialization time, the user calls Initialize to configure the HSM with an ECDSA sign-
ing key and the key for the HMAC pseudorandom function (used for generating signing
nonces). The HSM also exposes a Sign command that takes a message as input and returns
a signature on it. There is no method to retrieve the signing key or the PRF key from the
HSM.

The Low? implementation of the handle function along with the IPR proof consists
of 500 lines of code, not including library code/proof used from HACL?. The complete
implementation extracts to 2,000 lines of C code.
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For Knox verification to go through, the app implementation must not leak informa-
tion through timing. HACL? code is already intended to be constant time, and verification
confirmed that library functions indeed execute in constant time on our hardware, so we
did not need to modify any library code. In the implementation, we needed to take care
to ensure that other operations do not leak information through timing. For example, the
ecdsa_p256 spec/implementation return an error if the nonce or signing key is not less than
the prime field order, and also return an error if r = 0 or s = 0 in the signature algorithm.
The HSM spec does not distinguish between any of these errors (the caller just receives
Signature None), and so IPR requires that the implementation also not reveal any infor-
mation beyond this. The implementation computes a signature unconditionally, and then
applies a mask to the buffer (0xff or 0x00) based on whether all the checks passed or not;
this way, the entire computation is constant-time.

Application 2: Password hashing. As a second case study, we implemented a password-
hashing HSM. Figure 8-1 shows the core of the specification. The complete F? specification
(figure A-2) is about 30 lines of code. The HSM implementation is a thin wrapper around
the HMAC/Blake2S implementation from HACL?.

1 let step (st:state_t) (cmd:command_t): state_t & response_t =

2 match cmd with

3 | Initialize secret ->

4 { secret = secret }, Initialized

5

6 | Hash message ->

7 let digest = hmac Blake2S st.secret message in

8 st, Hashed digest

Figure 8-1: The transition function from the specification for a password-hashing HSM. The
definition of hmac is used directly from HACL?.

Hardware platform 1: Ibex-based SoC. Our main hardware platform is a stripped-down
version of the OpenTitan open-source hardware root of trust. The CPU is the Ibex, a two-
stage pipelined RISC-V processor written in 13,000 lines of SystemVerilog. This is a pre-
existing open-source CPU not purpose-built for verification. The HSM uses a UART periph-
eral to communicate with the host machine. In addition, the SoC contains a RAM, a ROM,
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and ferroelectric RAM (FRAM) as persistent memory. Aside from the CPU, the rest of the
components are written in 500 lines of Verilog.

The system software for this platform—main loop, drivers, I/O code, and persistence
code—is written in 300 lines of C and assembly.

Our implementation makes two changes to the CPU: we remove async resets because
Rosys doesn’t support them, and we replace the Ibex’s multiplier with a simple full-width
Verilog multiplication of operands.

We changed themultiplier such that it does not affect circuit-level timing, but the change
speeds up verification. Some hardware designs, such as the Ibex, include an implementa-
tion of a multiplier made up of smaller multipliers. The original implementation uses the
Verilog * operator on 16-bit operands, and it uses several such multipliers and several cy-
cles of execution to implement a 32-bit multiply. In Knox execution, this results in a slightly
larger gap between assembly-level execution and circuit-level execution, which slows down
verification. A common practice when writing hardware implementations is to use the Ver-
ilog * operator on full-width operands and leave it to the synthesis tool (e.g., Yosys) to infer
an optimal implementation of the multiplier. This often results in better FPGA code, be-
cause, for example, the synthesis tool can implement the multiplier using the largest DSP
blocks available on the hardware target. For these reasons, we swapped the Ibex’s original
multiplier with a full-width multiplier.

Hardware platform 2: PicoRV32-based SoC. We also verify and run the case-study ap-
plications on a second CPU, the PicoRV32, which is a size-optimized RISC-V CPU. As with
the Ibex, we removed async reset from the implementation. This platform uses the same
system software as the Ibex-based SoC. We use the PicoRV32 SoC to quantify the develop-
ment effort required to port to a new platform, in section 9.1.

8.2 Security discussion

Attacks handled by Parfait. Parfait proves IPR between the app’s functional specification
and the SoC running the app and system software, so the verification process catches all
possible bugs that are captured by IPR: hardware bugs, software bugs, and timing side
channels. Here, we give several examples of possible bugs, and explain what part of the
verification process prevents those bugs.

• Software logic bug (e.g., integer overflow leading to nonce reuse): Starling will catch
this when verifying the postcondition for the Low? implementation, which ensures
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that the output and final state of the implementation match the output and final state
of the specification.

• Software-level timing leak from branching on a secret: although this is a “software
bug,” Parfait does not introduce any notions of timing until the SoC level—earlier
level execute HSM operations in a single state-machine step. Knox will catch this
because the emulator’s behavior will not match the circuit’s behavior.

• Compiler-introduced timing leakage: if a compiler optimization introduces a timing
bug, such as returning early from memcmp, Knox will catch this bug at the SoC level,
just as in the above example.

• Hardware-level timing leak from a variable-latency arithmetic instruction executed on
secret data: Knox will catch this, as the emulator’s behavior will not match the circuit.
The emulator doesn’t have access to the secret data, so it computes over dummy
data instead; the real circuit will take a different amount of time, not matching the
emulator.

• Buffer overflow or use-after-free: Low? verification prevents these memory safety
bugs. In particular, type checking in the Stack effect ensures memory safety.

• Stack overflow: Parfait uses an abstract memory model up to and including the app
assembly level (including in the Riscette semantics), with an unbounded size stack
and frames addressed by mathematical integers. The SoC level introduces a bounded
stack. To rule out stack overflows, Knox relates the SoC with a bounded stack to the
app assembly with an unbounded stack and shows that they correspond.

• I/O peripheral driver bug in system software (e.g., incorrectly encoding the output or
setting the wrong UART baud rate): Knox will catch this bug when verifying func-
tional simulation.

• Pipeline hazard in CPU implementation: caught during Knox verification. If this oc-
curs during the execution of the app code, this will show up as a mismatch between
the app assembly execution (which uses the Riscette instruction-by-instruction exe-
cution semantics) and the hardware execution.

Out-of-scope attacks. Parfait does not handle physical attacks on the HSM.While Parfait’s
threat model allows arbitrary digital I/O, Parfait assumes that the adversary cannot violate
the digital abstraction, such as sending 5V signals to a circuit expecting 3.3V logic. Parfait
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also does not handle physical side channels such as radiation [4], temperature [58], and
power [75]. Finally, Parfait cannot handle attacks that exploit mistakes in the specification.
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Chapter 9

Evaluation

This chapter answers two key questions:

• Section 9.1: What is the developer effort to verify HSMs with Parfait?
• Section 9.2: What is the performance of HSMs verified with Parfait?

9.1 Developer effort

Table 9-1 summarizes the lines of code required to specify and implement each of the four
HSMs from chapter 8 (two apps on two platforms). As the table shows, verification in Parfait
relates a hardware/software stack that takes over ten thousand lines of code to implement
to a state-machine-style application specification that comprises only tens of lines of code.

Table 9-1: Lines of code for case studies. The specification covers the hardware and software
stack. Spec LoC counts the lines the HSM developer writes (and doesn’t include HACL?,
Low?, or F? library/language code). Driver LoC counts the total lines of driver code across
the software and hardware levels.

HSM Spec Driver Platform Implementation
Software Hardware

ECDSA signer 40 LoC 100 LoC Ibex 2,300 LoC 13,500 LoC
PicoRV32 2,300 LoC 3,000 LoC

Password hasher 30 LoC 100 LoC Ibex 1,000 LoC 13,500 LoC
PicoRV32 1,000 LoC 3,000 LoC

Table 9-2 shows, for each case-study app, the number of lines of proof required to prove
the lockstep property between the app’s F? specification and its Low? implementation.
We co-developed the ECDSA-signer app with Starling, so we cannot report the verification

93



effort for the ECDSA-signer app on its own. Once the Starling framework was in place, we
implemented the password hasher app as a second case study. Implementing and verifying
this new app took two hours. Machine verification of these proofs runs in less than aminute.

Table 9-2: Software verification effort. Verifying a second application with Parfait required
only two additional developer-hours of effort.

App Proof Dev time

ECDSA signer 500 LoC -
Password hasher 200 LoC ∆ 2 hours

Table 9-3 shows the number of lines of proof required to verify the two platforms with
Knox. We co-developed the Ibex platform with the approach and framework; as a second
case study, we modified the platform and swapped the Ibex CPU with the PicoRV32 CPU.
Porting to this new platform took two hours and involved writing 10 lines of new proof
to map PicoRV32 CPU state to CompCert Asm abstract machine state, while the rest of the
proof remained unchanged, because the system software and rest of the hardware platform
(such as peripherals) remained unchanged.

Table 9-3: Hardware verification effort and verification time, showing both total wall-clock
time (single threaded) and symbolic circuit simulation speed. Porting the platform to use
a different CPU took just two hours of developer time and 10 lines of changed proof code.

Verification
Proof size (LoC) ECDSA signer Password hasher

Platform Emulator Hints Mapping Dev time Time Cycles/s Time Cycles/s

Ibex 50 250 10 - 80 hrs 304 0.10 hrs 289
PicoRV32 10 ∆ 2 hours 100 hrs 671 0.14 hrs 588

The “Verification” columns of table 9-3 show Knox’s verification performance for each
combination of app and platform, benchmarked on a machine with an Intel Xeon Gold
5420+ processor. It is possible to swap in new apps and hardware platforms with no
changes required to proof code on either side. After such a change, the only requirement
is to run Knox on the new software/hardware combination.

Knox verification is highly automated (section 6.4), though it can take up to 100 core-
hours of computation to verify our most complicated application. Verifying the ECDSA
HSM requires symbolically executing the hardware for tens of millions of cycles and issuing
hundreds of millions of SMT queries, leading to the long verification time. In contrast,
verifying the password hasher takes only a few minutes because the code is much simpler
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and only runs for hundreds of thousands of cycles. Verification throughput (cycles per
second) is higher for the PicoRV32, because simulating each SoC execution cycle is faster on
the simpler hardware. Total verification wall-clock time is higher for the PicoRV32 because
apps require more cycles to run on the non-pipelined processor, requiring Knox to simulate
more SoC execution cycles.

Development cycle. If the Low? implementation has a timing bug when executed by the
circuit, Knox verification will fail with a mismatch between the real circuit’s execution and
the emulator’s execution. Usually, this will be caused by secret data (on which timing should
not depend) entering the control state of the circuit; Knox can print out user-requested de-
bugging information such as the program counter when this occurs. From this, the user
can look at the assembly listing and then determine the C code corresponding to the pro-
gram counter value. This will generally reveal code that does something leaky, such as
if (secret) { ... } or x / secret. Going from the C code to the source Low? is easy
because a design goal of Low? is to translate straightforwardly to C.

Because hardware verification takes hours, one trick we use to identify failures faster
is reducing loop bounds. For example, if the implementation contains code that does
for (int i = 0; i < 80; i++), we can manually change the loop bound from 80 to 2
in the C code and try verifying that the hardware securely executes this code. Even though
this is no longer computing the “correct” functionality, timing leakage is usually not affected
by reducing loop bounds in this way, so we can catch issues faster. We revert to the original
code for the final verification.

9.2 Performance

Parfait’s use of the CompCert compiler introduces run-time overhead, because CompCert
emits less performant code than GCC does. Table 9-4 measures this performance penalty,
showing that several commercial HSMs have ECDSA-signing throughput that is within 12×
the throughput of HSMs built with Parfait. This is not an apples-to-apples comparison —
the different HSMs use different CPUs, have different ISAs, run at different clock speeds,
and run different software.

For some applications, such as client-side HSMs, run-time performance may not be the
primary concern. For example, a U2F token that takes 1 second to sign users in, but has a
formal proof of correctness/security/non-leakage, is valuable. For server-side applications,
performance is important in some but not all applications. Parallelization across multiple
low-cost HSMs could be used to overcome the performance gap. For example, Let’s Encrypt
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Table 9-4: Run-time performance comparison of HSMs. The Ibex processor is clocked at
100 MHz, which is the OpenTitan reference clock.

HSM Compiler ECDSA sig/s Improvement

Parfait ECDSA/Ibex CompCert -O1 1.1 -
GCC -O2 8.1 7x

Nitrokey HSM 2 [85] 12.5 11x
YubiHSM 2 [119] 13.7 12x

uses a fleet of HSMs for certificate signing [1]. With Parfait’s ECDSA HSM, for example, a
certificate authority could instantiate multiple HSMs with the same private key but different
PRF seeds, and then run them all in parallel.

The primary run-time performance penalty of Parfait comes from CompCert; as the re-
search community makes advances in verified compilers, a better CompCert would be a
drop-in replacement. Furthermore, the HACL? developers consider CompCert as an impor-
tant target, so future versions of HACL? could be tuned to aid CompCert in producing more
performant code. This would also be a drop-in replacement.

Ibex is a realistic (e.g., used in OpenTitan) but relatively simple HSM CPU. It is similar
in complexity to some production HSMs (e.g., many simpler devices use the ARM Cortex-
M3 series processor). One could use a slightly more complex CPU, such as the biRISC-
V [108] (a 6/7-stage pipelined CPU), that could provide better performance. Such CPUs
are compatible with Rosys [14], so the Parfait approach likely could be applied to HSMs
with such CPUs.
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Chapter 10

Conclusion

This thesis develops an approach to verify security and leakage-freedom for hardware and
software systems, relating an application specification to a circuit-level implementation.
This thesis applies this approach to verifying hardware security modules to be correct,
secure, and free of timing side-channel vulnerabilities. The contributions of this thesis
include foundational theories (information-preserving refinement), a verification approach
and framework (Parfait, Starling, and Knox), and several verified HSMs.

10.1 Discussion

Combining verification tools. Parfait uses three different verification tools—Coq, F?, and
Rosette—for IPR theory, software verification, and hardware verification, respectively. This
way, Parfait is able to use the best tool for each job. We heavily depended on the interac-
tive proof mode of Coq when verifying the IPR proof strategies. Parfait HSMs build on top
of the HACL? specifications, implementations, and proofs, and we benefited from the rich
support for verifying C-like programs in Low? using the F? language. Knox performs sym-
bolic execution of circuits for millions of cycles to verify IPR, and its performance critically
depends on Rosette’s hybrid symbolic evaluation. The hardware and software proofs use
vastly different strategies, and it would have been near-impossible to use F? to verify the
hardware implementation or use Rosette to verify the software.

Our experience with this approach has been positive: the results presented in this thesis
would likely not have been possible to produce in a comparable number of person-years if
we were restricted to using a single verification tool.

Circuit-level verification without a verified processor. Parfait sidesteps some of the
challenges traditionally faced by hardware/software verification efforts. Parfait’s goal is

97



to prove that a circuit satisfies an application-level specification, which doesn’t necessitate
having formalized intermediate specifications. In particular, this doesn’t require an ISA
specification and a verified-correct processor that provably implements this spec, such as the
Kami processor [31]. Parfait does not verify that a processor is correct; instead, it verifies
IPR, which captures that the processor correctly and securely executes the specific applica-
tion being verified, though this does require running Knox to verify each software/hardware
combination.

Verifying off-the-shelf real-world hardware. Parfait is able to verify IPR for implemen-
tations that use off-the-shelf processors that were not purpose-built for verification. This
is thanks to a focus on verifying IPR with respect to the specification (not not verifying
processor correctness in general), along with a high degree of automation in Knox through
its reliance on symbolic execution and SMT solvers in addition to many performance opti-
mizations.

10.2 Future work

Scaling up Parfait. This thesis verifies HSMs that use simpler embedded-class CPUs (such
as the two-stage-pipelined Ibex processor used in the OpenTitan) and I/O peripherals
(such as UART). Extending Parfait to more complex and powerful processors will require
new techniques; for example, Knox’s synchronization between assembly and circuit (sec-
tion 6.4.3) would likely need to be extended to support superscalar or out-of-order proces-
sors. Supporting more sophisticated I/O peripherals and protocols, such as USB or PCIe,
would likely require additional techniques to reconcile these stateful protocols with the
strict non-leakage requirements of the IPR definition.

Parfait requires a deterministic cycle-precise description of behavior to verify circuits.
This is why our HSMs use ferroelectric RAM (FRAM) as persistent memory, because its
specification describes cycle-precise timing behavior (completing word-level reads/writes
in a single cycle). Supporting components like flash memory, where datasheets do not
pin down cycle-precise timing behavior, will require reconciling nondeterminism with IPR’s
strict non-leakage requirements.

Horizontal and vertical composition of IPR. Parfait leverages transitivity to make proofs
of IPR for HSMs manageable. However, we have not defined or formalized a notion of hori-
zontal or vertical composition of state machines that are verified with IPR. Compositionality
could help enable:
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• Verifying a host machine application, such as certificate authority server software,
that builds on top of an HSM verified with IPR, such as the ECDSA signature HSM
(vertical composition)

• Verifying an HSM with an SoC that contains some black-box components, such as
a closed-source processor for which an IPR-style specification is verified by the CPU
designer and assumed by the software developer (horizontal composition)

Hardware accelerators. Some HSMs use hardware accelerators for cryptography. Our
work on verifying HSMs directly with Knox [13] supports hardware cryptographic accel-
erators but doesn’t scale to sophisticated software. The Parfait approach presented in this
thesis supports sophisticated software such as public-key cryptography but does not support
hardware accelerators.

Extending the IPR definition. The definition of information-preserving refinement could
be extended to capture non-leakage for HSM-like devices that:

• Support multiple applications, running one-at-a-time like Notary [11] or supporting
true multitasking

• Use true random number generators, as explored in Karatroc [120]
• Have hardware in multiple clock domains, as explored in Kronos [77]
• Use a real-time clock, to implement functionality such as rate limiting
• Handle trusted input, such as the confirmation button of U2F tokens
• Communicate with peripherals such as a GPS
• Execute multiple operations concurrently or in parallel

10.3 Final remarks

This thesis develops a definition of non-leakage that captures that a circuit implementation
leaks no more information than a specification allows. We believe that the definition of
information-preserving refinement and the ideas developed in this thesis are applicable
beyond hardware security modules. We hope that IPR can serve as the foundation of future
security definitions focused on capturing non-leakage.

Approaches and tools for formal verification are growing increasingly capable of verify-
ing complex and realistic systems. The techniques in this thesis show that it is possible to
prove security properties by symbolically executing an entire system-on-a-chip, including
its software, at the circuit level for millions of cycles. We hope that Parfait inspires practical
applications of formal verification of hardware and software systems.
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Appendix A

Code listings
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1 let prf_key_t = lseq uint8 16

2 let signing_key_t = lseq uint8 32

3 let message_t = lseq uint8 32

4 let signature_t = lseq uint8 64

5

6 noeq type state_t = {

7 prf_key:prf_key_t; prf_counter:uint64; signing_key:signing_key_t;

8 }

9

10 let state_init:state_t = {

11 prf_key = create 16 (uint 0);

12 prf_counter = uint 0;

13 signing_key = create 32 (uint 0);

14 }

15

16 noeq type command_t =

17 | Initialize: new_prf_key:prf_key_t

18 -> new_signing_key:signing_key_t

19 -> command_t

20 | Sign: message:message_t -> command_t

21

22 noeq type response_t =

23 | Initialized: response_t

24 | Signature: maybe_signature:option signature_t -> response_t

25

26 let step (st:state_t) (cmd:command_t) : state_t & response_t =

27 match cmd with

28 | Initialize prf_key signing_key ->

29 { prf_key = prf_key; prf_counter = uint 0; signing_key = signing_key },

30 Initialized

31

32 | Sign msg ->

33 if uint_v st.prf_counter < maxint U64 then

34 let data = uint_to_bytes_be st.prf_counter in

35 let nonce = hmac SHA2_256 st.prf_key data in

36 let sig = ecdsa_signature_agile NoHash _ msg st.signing_key nonce in

37 { st with prf_counter = incr st.prf_counter }, Signature sig

38 else

39 st, Signature None

Figure A-1: The complete F? specification for the ECDSA certificate-signing HSM, including
type definitions for the state, commands, and responses, and the description of the initial
state. See chapter 3 for an overview of the role of functional specifications in Parfait.
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1 let secret_t = lseq uint8 20

2 let message_t = lseq uint8 32

3 let digest_t = lseq uint8 32

4

5 noeq type state_t = {

6 secret:secret_t;

7 }

8

9 let state_init:state_t = {

10 secret = create 20 (uint 0);

11 }

12

13 noeq type command_t =

14 | Initialize: secret:secret_t -> command_t

15 | Hash: message:message_t -> command_t

16

17 noeq type response_t =

18 | Initialized: response_t

19 | Hashed: digest:digest_t -> response_t

20

21 let step (st:state_t) (cmd:command_t) : state_t & response_t =

22 match cmd with

23 | Initialize secret ->

24 { secret = secret }, Initialized

25

26 | Hash message ->

27 let digest = hmac Blake2S st.secret message in

28 st, Hashed digest

Figure A-2: The complete F? specification for the password-hashing HSM, including type
definitions for the state, commands, and responses, and the description of the initial state.
See chapter 8 for details on this HSM.
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