
Modular Components for Network Address Translation
Eddie Kohler, Robert Morris, and Massimiliano Poletto

MIT Laboratory for Computer Science
{eddietwo, rtm, maxp}@lcs.mit.edu

Abstract

We present a general-purpose toolkit for network ad-
dress translation in a modular, component-based net-
working system. Network address translation is a power-
ful, general technique for building network applications,
such as allowing disparate address realms to communi-
cate, load balancing among servers, and changing ordi-
nary proxies into transparent proxies. The components
of our toolkit can be combined in a variety of ways to
implement these applications and others. The context of
this work, the Click modular networking system, makes
the NAT components simpler and more understandable.
For example, the NAT components concern themselves
solely with address translation; related functions, such
as classification, are implemented by separate compo-
nents. This design is more flexible than most existing
NAT implementations. The user can choose where net-
work address translation takes place in relation to other
router functions, and can use multiple translators in a
single configuration. These components have been in use
in a production environment for several months.

We describe our design approach, demonstrate its flex-
ibility by presenting a range of examples of its use, and
evaluate its performance.

1 Introduction

Network address translation (NAT), web server load bal-
ancing, and redirecting traffic to transparent proxies all
share a common feature: they involve a level of indirec-
tion in the meaning of IP addresses and port numbers,
and can be implemented by rewriting those values in IP
headers and payloads. Usually these tasks are carried out
in specialized routers tailored to the particular task, with
limited configurability beyond that task.

This paper presents a general-purpose toolkit for
rewriting packets to provide a level of indirection in IP
addresses and port numbers. Individually, each toolkit
component is not necessarily more powerful than other

This research was supported by a National Science Foundation (NSF)
Young Investigator Award and the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory under agreement number
F30602-97-2-0288. In addition, Eddie Kohler was supported by a Na-
tional Science Foundation Graduate Research Fellowship.

existing devices that perform specific address translation
or traffic redirection tasks. However, the ability to com-
bine these components into new arrangements makes
the component-based system more flexible than any sin-
gle monolithic system. The particular address translation
functions mentioned above fall out as special cases of our
general rewriting framework, suggesting that the frame-
work will prove useful for other tasks as well.

Our rewriting toolkit is implemented as a family of
elements in the Click [8] modular router. The rewrit-
ing elements divide into three categories: translation
elements, such as IPRewriter, which actually perform
network address translation and modify packet head-
ers; mapping helpers, such as RoundRobinIPMapper,
which help translation elements create new mappings
that define how unknown flows should be rewritten;
and application-level gateways, such as FTPPortMap-
per, which perform packet manipulations required to
help specific protocols pass through a NAT. These ele-
ments can be combined in many ways to provide almost
arbitrary packet rewriting functionality.

The next section gives some background on network
address translation. Section 3 provides an overview of
the Click system. Section 4 describes the design and im-
plementation of the family of rewriting elements. Sec-
tion 5 presents a variety of examples of how the rewriter
can be used. Section 6 analyzes its performance. Section 7
discusess related work, and Section 8 concludes.

2 Network address translation

Network address translation was originally designed to
help ease the demand for IP addresses. For a set of ma-
chines on a local network, RFC 1631-style, or “Basic”,
NAT [5] reserves both a large set of private IP addresses
and a small set of public IP addresses. Each machine
gets a permanent private IP address; local machines can
communicate with one another using these addresses.
However, they cannot directly communicate with the In-
ternet at large, where the private addresses are mean-
ingless. Therefore, all packets to and from the Internet
are expected to travel through a translator. When a lo-
cal machine sends a packet to the Internet, the transla-
tor assigns that machine a public IP address from the



local machine
10.0.0.4

NAT
gateway

remote machine
18.26.4.44

s=10.0.0.4
d=18.26.4.44

s=18.26.4.44
d=10.0.0.4

s=64.55.139.202
d=18.26.4.44

s=18.26.4.44
d=64.55.139.202

Figure 1—Basic NAT, as described in RFC 1631 [5]. The local machine
has a private IP address. When it sends packets to an Internet host,
the NAT gateway assigns it an address from a public address pool
and rewrites the packets accordingly. Replies are rewritten to use the
original private IP address.

pool. It rewrites the IP packet to use this public address,
and saves the private–public mapping in a table. When a
packet from the Internet arrives that is destined for one of
the public addresses, the translator looks in its table for a
mapping for that address, rewrites the packet to use the
corresponding private address, and sends the packet on
its way. Thus, local machines transparently gain a public
address on a temporary basis. Mappings are garbage-
collected after some period of inactivity, making public
addresses available for reallocation. If there are n public
addresses, then at most n local machines can access the
Internet simultaneously. Figure 1 illustrates this struc-
ture.

Basic NAT is one instance of a more general idea. Gen-
eral network address translators sit in the flow of pack-
ets and change packets’ flow identifiers. A flow identifier
consists of a packet’s protocol, source address, destina-
tion address, and optionally protocol-specific informa-
tion such as source and destination ports, or even URLs
for HTTP. A network address translator expects to re-
ceive bidirectional flow; that is, packets from the local
network to the Internet, and packets sent from the Inter-
net in response. It generally maintains a mapping table
describing how to rewrite packet headers so that rewrit-
ten packets maintain correct session semantics. Finally,
some application protocols, such as FTP, contain IP ad-
dresses in their data streams. These protocols are not
transparent to translation, and require special handling
by the translator, often in the form of an application-level
gateway [5, 14].

Thus defined, network address translation is a pow-
erful abstraction for manipulating traffic. Translators
can allow communication between disparate address

realms [13]; Basic NAT lets a network with privately al-
located addresses communicate with the Internet at large,
while other forms let IPv6-only and IPv4-only hosts in-
teroperate [9, 15]. Translators can also protect a local
network from intrusion, similar to a firewall, or load-
balance requests between a set of servers [12]. Other
uses have been proposed, such as creating network re-
dundancy [7].

NAT has disadvantages too, such as adding points of
failure (due to the state translators must generally main-
tain), breaking the uniqueness of IP addresses, and vio-
lating the Internet’s end-to-end philosophy [6]. IPv6 ad-
dresses these problems, and some recommend that NAT
be abandoned for IPv6. However, NAT is undeniably
useful on today’s Internet; it provides an interesting ab-
straction for building network applications; and it will
even be used to ease the transition to IPv6. A truly flex-
ible and modular NAT implementation may ease some
of NAT’s difficulties by making its use and deployment
more configurable and understandable. Our goal has
been to build such an implementation in the context of
a modular router toolkit, Click.

3 Click

Click routers are built from components called elements.
Elements are modules that process packets; they control
every aspect of router packet processing. Router configu-
rations are directed graphs with elements as the vertices.
The edges, called connections, represent possible paths
that packets may travel. Each element belongs to an el-
ement class, which determines its behavior by setting
the code executed when the element processes a packet.
Each element also has an optional configuration string,
which element classes can use to select behavior more
precisely. For example, the Tee element class duplicates
packets; a Tee element’s configuration string, an integer,
says how many copies to make. Inside a running router,
elements are represented as C++ objects and connections
are pointers to elements. A packet transfer from one el-
ement to the next is implemented with a single virtual
function call.

Elements also have input and output ports, which
serve as the endpoints for packet transfers. Every con-
nection leads from an output port on one element to an
input port on another. An element can have zero or more
of each kind of port. Different ports can have different
semantics; for example, the second output port is often
reserved for erroneous packets.

Every queue in a Click configuration is explicit. Thus, a
configuration designer can control where queueing takes
place by deciding where to place Queue elements. This
enables valuable configurations like a single queue feed-
ing multiple interfaces. It also simplifies and speeds up

2



FromDevice(eth0)

FromDevice(eth1)

ToDevice(eth2)

Figure 2—A sample Click configuration.

packet transfer between elements, since there is no queue-
ing cost by default.

The Click system includes a simple, declarative lan-
guage for describing router configurations. The language
specifies how elements should be connected together. To
configure a router, the user creates a Click-language file
and passes it to the system. The system parses the file,
creates the corresponding router, tries to initialize it, and,
if initialization is successful, installs it and starts routing
packets with it.

Figure 2 shows a simple Click configuration. Its effect
is to read packets from the network interfaces named
eth0 and eth1, append them to a queue, and transmit
them out interface eth2.

Figure 3 shows a basic 2-interface IP router configura-
tion, the starting point for the various configurations de-
scribed in the remainder of this paper. This configuration
implements all required IP forwarding functionality [1];
see [8] for a complete description of how it works.

Click router configurations run in a downloadable
Linux kernel module.

4 Architecture

A flexible NAT implementation should give the user full
control over (1) the choice of packets to be translated; (2)
the type of translations to be performed—for example,
the choice of flow identifier; (3) the addresses and port
numbers to use for translated packets; (4) convenient
interfaces for use by application-level gateways (which
support protocols like FTP); and (5) the placement of
translation in relation to other packet processing tasks.
Existing NAT implementations generally address a sub-
set of these requirements. Cisco routers, for example,
address (1), (2), and (3) to greater or lesser degrees, but
do not provide programming interfaces for additional
application-level gateways or allow the user to deter-
mine when translation should be performed [2]. On the
other hand, Cohen and Rangarajan’s NEPPI system [4]
is designed to support flexible application-level gateway
processing—requirement (4)—but supports the other re-
quirements less thoroughly, and requirement (5) not at
all. In general, existing NAT implementations only some-
times satisfy requirement (4), and very rarely satisfy re-
quirement (5). That is, interfaces for application-level
gateways are often difficult to use or unpublished, and
users cannot control when and where translation is per-

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

PaintTee(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

PaintTee(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 3—An IP router configuration.

3



formed. A NAT system that does not satisfy these re-
quirements may be useful for a single task, but it will not
be easy, or even possible, to use it for other tasks, and its
operation in a complex network context may be difficult
to analyze or understand.

We have addressed all these requirements by imple-
menting NAT with flexible IP rewriting elements in Click.
This section describes those elements and demonstrates
their flexibility in theory. The next section demonstrates
their flexibility in practice by showing them in context
of real network applications.

The IP rewriting elements address the five require-
ments in the following ways:

1. Choice of packets to be translated: Click IP rewrit-
ers are elements—packet processing components;
they translate only the packets that pass through
them in the router configuration graph. Thus, users
can determine which packets to translate by choos-
ing which packets to send through a rewriter. This
choice is expressed by other elements in the con-
figuration. It can be based on conventional criteria,
such as arrival interface or source address, or arbi-
trary other criteria, such as type-of-service value or
packet contents.

2. Type of translations to be performed: Different
Click IP rewriters perform different kinds of transla-
tions; the user chooses a translation type by choos-
ing an element. Multiple rewriting elements, and
therefore multiple kinds of translation, can coexist
in one configuration.

3. Addresses and port numbers to use for translated
packets: These are determined by IP rewriter ele-
ments’ input ports and configuration strings. Each
input port corresponds to one configuration argu-
ment; packets arriving on that input port are trans-
lated as that argument directs. Arguments can del-
egate the translation decision to user-supplied ele-
ments, making translation extensible.

4. Convenient interfaces for use by application-level
gateways: The IP rewriters share a common in-
terface for accessing their internal tables, which is
available both to other elements, and to user-level
programs through ioctl commands.

5. Placement of translation relative to other packet
processing tasks: Users may place IP rewriter ele-
ments wherever they would like in Click router con-
figurations. Again, multiple rewriters with distinct
tables can naturally coexist.

Finally, we mentioned how the addresses and port num-
bers used for a translated flow depend on the input port

on which that flow was first encountered. In addition,
IP rewriting elements demultiplex packets onto different
output ports, depending on the mappings specified by the
user. This makes it easier to use the rewriting elements
in real routers. Users can specify that different kinds of
packets—for example, rewritten packets destined for the
Internet, as opposed to rewritten packets destined for
the local network—should be emitted on different out-
put ports.

4.1 Structure

Click IP rewriting elements divide into three categories.
First, translation elements, such as IPAddrRewriter, IP-
Rewriter, TCPRewriter, and ICMPPingRewriter, actu-
ally perform network address translation. They main-
tain mapping tables for active flows. As packets arrive,
the elements use their flow identifiers to find correspond-
ing mappings in the tables. When mappings are found,
the elements translate the packets’ headers accordingly.
When no mappings are found, the elements create new
mappings as specified by the rewrite patterns in their
configuration strings.

Second, mapping helpers, such as RoundRobinIP-
Mapper, help translation elements create mappings for
unknown flows. Users can write arbitrary policies for
new mappings by creating mapping helper elements. For
example, RoundRobinIPMapper takes a set of addresses,
and chooses from them in round-robin order as it re-
ceives requests for new mappings. Other elements could
implement weighted round-robin selection or even selec-
tion based on packet characteristics.

Third, application-level gateways, such as FTP-
PortMapper and ICMPRewriter, perform the packet ma-
nipulations required to help particular protocols pass
through a NAT. They use interfaces on translation ele-
ments to analyze or change existing translations.

4.2 Mapping tables and flow identifiers

Translation elements change packet headers based on the
packets’ flow identifiers. The definition of “flow identi-
fier” depends on the particular translation element in
question. For example, for IPAddrRewriter, which im-
plements Basic NAT, flow identifiers consist of protocol,
source address, and destination address; IPRewriter adds
TCP/UDP source and destination ports.

The translation element’s mapping table relates flow
identifiers to structures called mappings. A mapping
specifies exactly how a packet’s header should be
changed. It may include a new flow identifier, deltas
for incrementally updating IP and TCP/UDP checksums,
deltas for TCP sequence numbers, the output port to
use for corresponding packets, and so forth. The exact

4



Source (a1) Rewriter New destination (a′2)
a1:p1 → a2:p2 a′1:p′1 → a′2:p′2

a′2:p
′
2 → a′1:p

′
1

a2:p2 → a1:p1

Figure 4—Action of a generic NAT with port translation. Each arrow
represents a packet with the given flow ID.

contents of a mapping are determined by the translation
element of which it is a part.

When a packet arrives at a translation element, its flow
identifier is extracted and the mapping table is searched
for a corresponding mapping. If there is a mapping, the
element will change the packet as that mapping requires
and send the modified packet to some output port. How-
ever, some packets, which we call fresh, do not corre-
spond to a mapping. These packets represent new ses-
sions. The action taken for a fresh packet depends on
the input port on which it arrived, as described in the
next subsection.

A machine s sends packets to a machine d generally in
expectation of receiving a reply. Network address trans-
lators must properly handle these reply packets. Map-
pings are therefore installed in pairs: one mapping for the
flow identifier, another mapping for replies’ flow iden-
tifier. For example, Figure 4 illustrates a generic NAT
with port translation. The central rewriter will have map-
pings for a1:p1 → a2:p2, the original flow ID, and for
a′2:p′2 → a′1:p′1, for replies to the rewritten flow ID.

Translation elements must also have a policy for clean-
ing old mappings from their tables. These policies might
include examining packet data, such as TCP FIN flags, to
detect session close, as well as arbitrary timeouts. Click’s
translation elements currently implement variable time-
outs; we will soon add TCP-specific session close detec-
tion.

4.3 Rewrite patterns

A central abstraction for Click rewriting elements is the
rewrite pattern. These are text strings, included in el-
ements’ configuration strings, that specify how packets
should be translated. Several forms encapsulate common
translation directives—for example, that all new flows
should be dropped, or that their source addresses and
ports should be rewritten. A pattern can also delegate its
responsibility to a user-specified mapping helper element.
Thus, rewrite patterns are arbitrarily extensible.

Each input port on a translation element corresponds
to a single rewrite pattern. That pattern determines how
fresh packets arriving on that input port are translated.
Patterns are irrelevant for non-fresh packets.

Click’s rewrite patterns include:

– ‘drop’. Fresh packets are dropped.

– ‘nochange’. Fresh packets are passed through the
translator element without installing any new map-
pings.

– ‘keep’. The rewriter installs a pair of mappings—one
for the fresh packet’s flow ID, one for its correspond-
ing reply flow ID—that leave the packet headers un-
changed. Thus, future packets with either the input
flow ID or its reply flow ID will be passed through the
rewriter even if they arrive on an input port with, for
example, a ‘drop’ rule.

– ‘pattern A1 P1 A2 P2’ (IPRewriter and TCPRewriter
only). Creates a pair of mappings that change the fresh
packet’s flow ID according to the pattern. The pattern
has four parts: a new source address A1, new source
port P1, new destination address A2, and new desti-
nation port P2. Any of these parts can be a dash ‘–’,
which means “leave unchanged”. Thus, the pattern
‘1.0.0.1 – 1.0.0.2 –’ will set the packet’s source and
destination addresses but leave the ports as they are.

The source port specification can also be a range
of ports ‘PL–PH’, in which case the rewriter will
choose a port between PL and PH. It will also en-
sure that any two active mappings created by this pat-
tern have different source ports. The pattern ‘1.0.0.1
1024–65535 1.0.0.2 80’, for example, sets every fresh
packet’s source address to 1.0.0.1, destination address
to 1.0.0.2, and destination port to 80. The new source
port, however, will differ for any two active sessions.
Therefore, the new source port uniquely identifies an
session, and every reply packet can be mapped back
to a unique flow ID.

Source ports are only unique within the context of a
single rewrite pattern. That is, different patterns may
allocate the same source port for two simultaneously
active sessions, even if both patterns are part of the
same translation element.

– ‘pattern A1 A2’. This limited version of pattern changes
packets’ source and destination addresses only. It is
used for IPAddrRewriter. The A1 argument may be a
range of IP addresses, similar to P1 above.

– ‘pattern name’. Named patterns are stored in a spe-
cial IPRewriterPatterns element. Through references
like ‘pattern name’, these patterns can be shared by
multiple rewriter elements, or by multiple input ports
on a single rewriter element. This is particularly use-
ful to keep source ports unique among input ports or
translation elements: since the single pattern is shared,
source ports are kept unique.

5



– ‘elementname’. A rewrite rule may consist of a single
element name, which names a mapping helper element.
When fresh packets are encountered, the translator
element will call a method on the specified mapping
helper. The mapping helper may install new mappings
using whatever criteria it likes, thus specifying how the
packet should be translated.

Note that rewrite patterns need only specify new
flow identifiers. The rest of the configuration determines
which old flow identifiers will reach a particular trans-
lation element input port, and therefore a particular
rewrite pattern.

4.4 IPAddrRewriter

We now turn to particular translation elements. The first,
IPAddrRewriter, implements Basic NAT as specified in
RFC 1631 [5]. It can implement static or dynamic vari-
ants depending on its configuration string.

Again, in Basic NAT, local machines are assigned IP
addresses from a public pool as they access the Internet.
IPAddrRewriter stores these address correspondences in
a mapping table. A flow identifier is either a source ad-
dress or a destination address. When a packet arrives,
its source address and destination address are each used
to look up a mapping. If neither corresponds to a map-
ping, the packet is fresh, and the element uses the cor-
responding rewrite pattern. IPAddrRewriter mappings
only change packets’ source address or destination ad-
dress, and their IP checksums.

This example IPAddrRewriter element implements Ba-
sic NAT. Packets arriving on the first input, which cor-
respond to the first rewrite pattern, are expected to
have originated on the private network. Packets arriv-
ing on the second input are expected to have origi-
nated on the public network. Thus, fresh packets arriv-
ing on the first input should introduce new mappings—
add new private–public address correspondences—while
fresh packets arriving on the second input should be
dropped. This is easily achieved:

IPAddrRewriter(pattern 18.26.49.1-18.26.49.14 -,
drop);

(In this example, and all succeeding examples, we have
left out additional arguments that specify the output
ports to be used for a given rewriter pattern.) Again,
IPAddrRewriter’s configuration string specifies the pub-
lic address pool—the 14 addresses from 18.26.49.1 to
18.26.49.14—but not the private address pool.

4.5 IPRewriter and TCPRewriter

The IPRewriter and TCPRewriter translation ele-
ments implement network address port translation, or

local machine
10.0.0.4

NAT
gateway

remote machine
18.26.4.44

s=10.0.0.4:5019
d=18.26.4.44:80

s=18.26.4.44:80
d=10.0.0.4:5019

s=64.55.139.202:58321
d=18.26.4.44:80

s=18.26.4.44:80
d=64.55.139.202:58321

Figure 5—Network Address Port Translation.

NAPT [13]. In this form of NAT, several IP addresses
may be simultaneously translated to a single IP address,
because the TCP/UDP port number space is further used
to distinguish between sessions; see Figure 5.

NAPT is limited to the TCP and UDP protocols. A
NAPT flow identifier consists of the tuple of protocol,
source address, destination address, source port, and des-
tination port. An IPRewriter mapping changes packets’
source and destination addresses, source and destination
ports, IP checksums, and TCP/UDP checksums. TCPRe-
writer is specialized for TCP only; a TCPRewriter map-
ping can additionally change packets’ sequence number
and acknowledgement number fields.

This example IPRewriter element implements simple
NAPT, also known as IP masquerading. This NAT ap-
plication lets multiple machines with different private IP
addresses share a single public IP address for communi-
cation with the Internet at large. Packets arriving on the
first input, which correspond to the first rewrite pattern,
are expected to have originated on the private network.
Packets arriving on the second input are expected to have
originated on the Internet. Thus, again, fresh packets ar-
riving on the first input should introduce new mappings,
while fresh packets arriving on the second input should
be dropped.

IPRewriter(pattern 18.26.49.7 1024-65535 - -,
drop);

In this example, all outgoing flows are rewritten to use
unreserved source ports. However, say we would like
outgoing flows with reserved source ports to also have
reserved source ports when translated. This is easy to
achieve. We just add another input port and correspond-
ing pattern and, elsewhere in the configuration, make
sure to send packets to the correct input for their source
port.

6



IPRewriter(pattern 18.26.49.7 1-1023 - -,
pattern 18.26.49.7 1024-65535 - -,
drop);

4.6 ICMPPingRewriter

The ICMPPingRewriter element demonstrates how the
translation element design applies to specific protocols. It
provides address translation, similar to IPRewriter-style
NAPT, for ping packets; since ICMP echoes and echo
replies do not have ports, they are not supported by IP-
Rewriter itself. ICMPPingRewriter’s flow identifiers con-
sist of packets’ source address, destination address, and
ICMP identifier field. Every input echo request packet
is changed to have a single source address. ICMPPing-
Rewriter changes the ICMP identifier field to a unique
number; this resembles IPRewriter’s use of source port
ranges. Echo replies are rewritten accordingly.

For example, this simple ICMPPingRewriter lets pings
travel through the NAPT described in the last subsection.

ICMPPingRewriter(18.26.49.7, -);

4.7 RoundRobinIPMapper

The RoundRobinIPMapper element provides one exam-
ple of a mapping helper. Its configuration argument con-
sists of a list of rewriter patterns. Like any mapping
helper, it receives requests from translation elements to
create mappings for fresh packets. It delegates each map-
ping request to one of its component rewriter patterns;
it cycles through those patterns in round-robin order as
it receives requests.

Mapping helpers need implement exactly one C++
function:

Mapping *get_map(IPRw *rewriter, int ip_protocol,
const IPFlowID &fresh_flow_id,
Packet *fresh_packet);

The rewriter argument specifies the relevant translation
element. The other arguments, including fresh_packet,
describe the fresh packet that needs to be rewritten. The
mapping helper is expected to choose a new mapping,
install that mapping into rewriter, and return it.

RoundRobinIPMapper can, for example, implement
virtual servers through load sharing network address
translation, or LS-NAT [12]. In LS-NAT, a single, well-
known IP address—often the address of the network
address translator—actually refer to a pool of servers.
As requests arrive at the well-known server, a translator
rewrites them and sends them off to one server from the
pool. Responses from the pool servers are re-rewritten
to appear as if they originated at the well-known server
address.

The following element returns mappings that send in-
put flows to four servers in round-robin order:

rr_mapper :: RoundRobinIPMapper
(pattern - - 18.26.49.2 -,
pattern - - 18.26.49.3 -,
pattern - - 18.26.49.4 -,
pattern - - 18.26.49.5 -);

RoundRobinIPMapper is meaningless by itself; for in-
stance, packets do not pass through it. It must be used
by a translation element, such as this IPRewriter element:

IPRewriter(rr_mapper,
drop);

The rest of the configuration might send Web requests
to this element’s first input port, and replies from one of
the 18.26.49.* servers to its second input port.

Clearly, the mapping helper interface is flexible enough
to support arbitrarily complex load balancing algo-
rithms, among other things. Mapping helpers are also
easy to write: RoundRobinIPMapper takes less than 100
lines of C++ code, and most of that is concerned with
parsing the configuration arguments.

4.8 ICMPRewriter

The ICMPRewriter application-level gateway element
allows ICMP error packets—redirects, host unreach-
ables, and so forth—to pass through a NAT gateway.
These packets contain a portion of the offending packet’s
header, which will include its flow ID. The ICMPRe-
writer element extracts this flow ID, queries a specified
IPRewriter element to find the corresponding mapping,
and, if that mapping exists, rewrites the ICMP packet
and the embedded IP header accordingly.

ICMPRewriter calls a simple function on the relevant
translation element to find a mapping, specifically:

Mapping *get_mapping(int ip_protocol,
const IPFlowID &flow_id);

ICMPRewriter must be provided with the names of
the translation elements it should check for mappings.
For example:

ICMPRewriter(rw);

Like mapping helpers, application-level gateway ele-
ments can be simple to write; ICMPRewriter takes about
150 lines of C++ code.

4.9 FTPPortMapper

The FTPPortMapper element is a slightly more complex
application-level gateway element, one that rewrites FTP

7



control packets to support NAT. The FTP protocol [10]
can contain embedded IP addresses in ASCII to support
the PORT and PASV commands. A PORT command
specifies that an FTP client has opened a port for listen-
ing; it expects the FTP server to connect to that port and
send it data. This causes problems for NAT or NAPT,
both because the client’s address may need to be modi-
fied, and because the server is not normally allowed to
initiate connections into a local network. FTPPortMap-
per takes FTP control packets, which it monitors for
PORT commands. When it sees a PORT command, it
creates a new mapping on some translation element cor-
responding to that port—thus allowing the FTP server to
access that port—and then rewrites the packet’s data to
refer to the newly mapped port. Because the IP address
and port are in ASCII, this data rewriting may cause the
packet to grow or shrink, which will affect TCP sequence
numbers. Therefore, FTPPortMapper also manipulates
sequence number and acknowledgement number offsets
on a TCPRewriter element, through which the FTP con-
trol packets are expected to pass.

Like ICMPRewriter, FTPPortMapper must be pro-
vided with the names of relevant translation elements:
one for the FTP control connection, one for the data
connection. It also takes a single pattern, which is used
for creating mappings for PORT commands. For exam-
ple:

FTPPortMapper(rw, tcp_rw,
pattern 18.26.49.7 1024-65535 - -);

FTPPortMapper takes about 250 lines of C++ code.

4.10 Discussion

Once a given rewrite pattern’s source port range is ex-
hausted, that pattern will drop new packets rather than
reuse active source ports. As mappings are removed, of
course, the corresponding source ports become available
again. A similar statement holds for source IP address
ranges used with IPAddrRewriter.

Some care is required to ensure that different fresh
packets are never mapped to the same new flow ID. For
example, consider these patterns:

pattern 1.0.0.1 1024-4096 - -,
pattern 1.0.0.1 2048-8192 - -

If packets with flow IDs A:B → 18.26.4.44:80 and
C:D → 18.26.4.44:80 arrive on the two input ports, the
rewriter might choose 1.0.0.1:2048 → 18.26.4.44:80
as the new flow ID for both. This would make the reply
mapping ambiguous. However, the rest of the configura-
tion might ensure that packets arriving on input 0 had
destination port 80, while packets arriving on input 1
had destination port 22. In this case, there would be no

CheckIPHeader(...) CheckIPHeader(...)

Paint(1) Paint(2)

Strip(14) Strip(14)

IPRewriter(...)

GetIPAddress(16)

LookupIPRoute(...)

Figure 6—An extension to Figure 3 supporting NAPT.

conflict between the patterns, because two new flow IDs
created by the two patterns would never share the same
destination port. As described above, shared named pat-
terns also prevent this problem.

Click supports hot swapping, where a newly installed
configuration can atomically take the state of an old
configuration to avoid routing hiccups. The IPRewriter
elements support hot swapping, so their mapping tables
need not be lost when configurations change.

5 Examples

The best way to demonstrate the flexibility and utility of
the IP rewriting elements is through examples. The pre-
vious section described example configurations in isola-
tion; this section shows how to use the elements in real
router configurations. We describe an IP router config-
uration extended to use NAPT, a transparent traffic di-
verter, and a complex NAT configuration that has been
in real use for six months.

5.1 Port routing

This section illustrates a simple NAPT, or masquerad-
ing, router; that is, an IP router configuration extended to
support network address/port translation. Again, this al-
lows a set of machines with private IP addresses to share
a single public IP address through TCP/UDP port rewrit-
ing. This configuration is built on the Click IP router of
Figure 3.

One natural place to insert NAPT into an IP router is
just before the routing table. Thus, packets will be routed
based on the rewritten flow IDs. Figure 6 demonstrates
this extension. The path in Figure 3 from Strip to Check-
IPHeader has been split in two: packets arriving from
the two interfaces are kept distinct until IPRewriter, so

8



that IPRewriter can distinguish between incoming and
outgoing packets. The IPRewriter element has two in-
put ports, and therefore two rewrite patterns. Assuming
that the externally visible address is 24.1.2.3, its par-
ticular patterns might be as follows: (Assume that the
left path—and the first input port—is for packets from
the Internet, while the right path—and the second input
port—corresponds to packets from the private network.)

IPRewriter(drop,
pattern 24.1.2.3 1024-65535 - - 0 0);

Notice the extra 0 0 arguments to the pattern specifica-
tion. These numbers indicate the output ports to be used
for new flows and their reply flows, respectively; they de-
termine how packets should be demultiplexed between
IPRewriter’s output ports. In this example, however, the
designer has decided that LookupIPRoute will do any
necessary demultiplexing, so IPRewriter has only one
output port.

This configuration drops all fresh packets from the
outside world. This is common, but often too restrictive.
A site with many internal hosts but only one externally
visible IP address may want to run servers that accept
TCP connections from the outside world. One option is
to run all of these servers on the same machine that runs
the site’s NAT, since that is the machine that owns the
one IP address. This may not be acceptable, however,
and the site may need a way to route connections to
the IP address to internal hosts. If there is more than one
kind of service, there may be more than one internal host
involved. What’s needed is a way to route connections
to port 21 to the internal FTP server, connections to port
25 to the internal mail server, and so forth.

We can use extra IPRewriter input ports to imple-
ment these additional rewriting rules. IPRewriter itself
will not classify packets by destination port, so a Click
IPClassifier element is needed to separate packets from
the outside world destined for different services. These
separate streams of packets should be sent to different
inputs of the same IPRewriter, rather than to separate
IPRewriters; this will let that single IPRewriter take care
of all reply flows from the internal servers.

As a concrete example, suppose that the externally vis-
ible address is 24.1.2.3, and that there are two internal
servers: host 10.0.0.10 takes care of port 25, and host
10.0.0.11 takes care of port 80. In addition, ordinary
NAT is to be applied to outgoing connections. Figure 7
shows the arrangement of the IPClassifier and IPRe-
writer elements for this example. Packets from the out-
side world arrive on the left-hand input; internal packets
arrive on the right-hand input. The IPClassifier’s three
outputs correspond to packets for port 25, packets for
port 80, and other packets, respectively. The relevant
element configurations are as follows:

CheckIPHeader(...)

IPClassifier(...)

CheckIPHeader(...)

IPRewriter(...)

GetIPAddress(16)

LookupIPRoute(...)

Figure 7—A router configuration for port routing.

IPClassifier(tcp port 25, tcp port 80, -);
IPRewriter(pattern - - 10.0.0.10 - 0 0,

pattern - - 10.0.0.11 - 0 0,
drop,
pattern 24.1.2.3 1024-9999 - - 0 0);

Assume, on the other hand, that there were three Web
servers, 10.0.0.11, 10.0.0.12, and 10.0.0.13, among
which Web requests should be load-balanced. This re-
quires a four-line addition to the configuration:

IPRewriter(pattern - - 10.0.0.10 - 0 0,
weblb,
drop,
pattern 24.1.2.3 1024-9999 - - 0 0);

weblb :: RoundRobinIPMapper
(pattern - - 10.0.0.11 - 0 0,
pattern - - 10.0.0.12 - 0 0,
pattern - - 10.0.0.13 - 0 0);

Again, in these configurations, IPRewriter and friends
just take care of NAT functionality. Classification func-
tionality, for example, is handled by other elements in
the configuration. This makes NAT-related classification
functionality more flexible, and makes the IPRewriter
element itself easier to understand.

5.2 Transparent traffic diverter

This section describes how to build a transparent traffic
diverter suitable, for example, for implementing trans-
parent proxies, and shows how such a diverter fits into a
larger system. The diverter is worth examining in detail
because it makes it easy to turn ordinary proxies and
servers into transparent proxies.

The diverter is meant to intercept all connections of
a certain type, regardless of intended destination, and

9



IPClassifier(...)

IPRewriter
(pattern FAKE 1024-65535 LOCAL 8000 0 1,

drop)

ToLinux

FromLinux
(fdev0, FAKE)

Classifier(...)

ARPResponder

CheckIPHeader

Strip(14)

EtherEncap(0x0800, ...)

Web other

ARP queries IP

to ARPQuerier

from IPFragmenter

to Linux

to LookupIPRoute

Figure 8—A transparent Web traffic diverter extension for the IP
router configuration.

send them to a particular host and port. The connec-
tions arrive at that host looking as if they were originally
intended to connect there. The program listening to the
relevant port can accept the connections as if they were
ordinary connections. When the program sends data on
such connections, the diverter rewrites them to look as
if they came from the host the connection was originally
meant to connect to.

One use of the diverter is to help build transparent
Web proxies [3]. In this case the program would be an
ordinary non-transparent Web proxy, slightly modified
to deduce the real server from the HTTP Host: header.

Figure 8 shows a Click configuration fragment that fits
the diverter’s IPRewriter into the larger IP router config-
uration of Figure 3. Figure 8 catches outgoing traffic just
before it reaches the outgoing interface’s ARPQuerier
and separates Web traffic from other traffic using an IP-
Classifier. Web traffic passes through an IPRewriter el-
ement, which rewrites packets’ flow IDs as described in
Section 4. The rewrite rule for outgoing packets is “pat-
tern FAKE 1024–65535 LOCAL 8000 0 1”, so packets
are rewritten and sent to port 8000 on the local machine.
The proxy should be listening on that port. The packets’
source addresses are also changed, to FAKE. (FAKE and

LOCAL stand for IP addresses.)
The FromLinux element captures replies from the

proxy. FromLinux installs a fake device into Linux’s de-
vice table; here, that device is named fdev0 and its native
IP address is FAKE. Linux’s routing table is manipulated
so that packets destined for the address FAKE are sent
to the fake device. Since packets directed to the proxy
have their source addresses changed to FAKE, replies
from the proxy will have destination address FAKE, and
will be sent to the fake device. As packets arrive on that
device, they are emitted into the Click router configu-
ration by FromLinux. The configuration must respond
to ARP requests sent to the fake device, which explains
the Classifier and ARPResponder elements. IP packets
from the fake device—namely, the proxy’s replies—are
sent through the IPRewriter, where they are rewritten to
look like replies from the intended server and properly
forwarded via the configuration’s routing table.

This diversion technique works for more than just
HTTP traffic. For example, we used exactly this config-
uration fragment to build a transparent DNS cache that
diverts DNS UDP packets to a host running an name
server. The name server need not be modified at all as
long as recursion is enabled.

5.3 Combining firewalling and NAT

This section describes how different IPRewriter-like ele-
ments can be composed to create a firewall and network
address translator with several interesting features:

– All but a minimal set of services and internal machines
are inaccessible from outside.

– Internal hosts have unlimited access to the outside.

– The firewall presents several IP addresses to the outside
world. Selected traffic to these addresses is translated
and forwarded to internal servers.

– Internal hosts reachable from the outside world can
be accessed from internal machines via either their
external or internal IP addresses.

– ICMP traffic (for example, “port unreachable” mes-
sages) related to traffic going through the firewall is
also translated and allowed through the firewall.

The Click configuration that implements these features
is compact and easy to understand. Most importantly,
since it is constructed from a small set of flexible and
general-purpose building blocks, it can be extended eas-
ily to support new features.

The rewriter patterns and the IPRewriter below form
the core of the configuration.

10



IPRewriterPatterns(
pat_to_out FILESERVER_OUTSIDE 20000-65535 - - ,
pat_to_file - - FILESERVER_INSIDE - ,
pat_to_mail - - MAILSERVER_INSIDE - ,
pat_file_lb FIREWALL_INSIDE 20000-65535

FILESERVER_INSIDE - ,
pat_mail_lb FIREWALL_INSIDE 20000-65535

MAILSERVER_INSIDE - );

rw :: IPRewriter(
pattern pat_to_out 0 1,
pattern pat_to_file 1 0,
pattern pat_to_mail 1 0,
nochange 2,
pattern pat_file_lb 1 1,
pattern pat_mail_lb 1 1 );

(Again, words in CAPITALS represent IP addresses.)
Let’s look at these patterns one by one. All internal

TCP or UDP packets bound for outside are sent to input
0 of rw and pushed out on output 0.

Appropriate packets (for example, SSH, SMTP) from
outside sent to the external file server or mail server ad-
dresses appear on input 1 or 2, respectively. Their desti-
nation addresses are changed to the internal IP address
of the appropriate server and they are then sent to the
internal network via rw output 1.

All other TCP and UDP packets from outside are sent
to input 3 of rw. If a mapping exists—because it was
created by some of the outgoing traffic on input 0—they
are rewritten, otherwise they are fed through unchanged.
In both cases, they are pushed to rw’s output 2. Rewritten
packets (now with internal destination addresses) are
forwarded to the inside network, whereas others are sent
to the firewall’s Linux IP stack.

Inside traffic may sometimes be directed at the outside
addresses of the file or mail server; for example, a laptop
user may join the internal network but use an external
DNS server to find the address of the mail server. Rather
than going out through the firewall and being routed
back in by the external router, this traffic is rewritten by
rules 4 and 5 of rw to point back to the internal addresses,
and never leaves the internal network.

Outgoing FTP control traffic is passed to an FTP-
PortMapper: this element creates a new mapping ac-
cording to the pat to out pattern defined above, rewrites
PORT commands in the payload to reflect the mapping,
and installs the mapping in two other rewriters, tcp rw
and rw. tcp rw then takes care of rewriting the headers
for inbound and outbound control traffic, whereas rw
handles FTP data traffic like any other TCP traffic for
which it has a mapping.

tcp_rw :: TCPRewriter(pattern pat_to_out 0 1,
drop);

ftp_pm :: FTPPortMapper(tcp_rw, rw,
pat_to_out 0 1);

ICMP pings are also handled specially. Echo requests
from the inside world are sent to ping rw, which rewrites
them to have source FILESERVER OUTSIDEand sends them
outside. Incoming echo replies are also sent to ping rw,
but are rewritten only if they match outgoing requests.
Incoming echo requests, on the other hand, pass through
ping rw unchanged and are then passed to the firewall’s
Linux stack.

ping_rw :: ICMPPingRewriter(FILESERVER_OUTSIDE, -);

Finally, any other outside ICMP traffic is sent to an
ICMPRewriter. This element rewrites an ICMP packet
(both header and payload) and forwards it on only if an
appropriate mapping exists in one of the given rewriters
(rw or tcp rw)—that is, only if the ICMP packet is related
to other traffic passing through the firewall. Otherwise,
the packet is discarded.

icmp_rw :: ICMPRewriter(rw tcp_rw);

6 Performance

IP rewriting in Click is sufficiently fast to make its perfor-
mance impact negligible in the context of a larger router,
firewall, or other packet processing configuration.

We evaluated the latency of an individual IPRewriter
by using micro-benchmarks. Measurements were taken
on a 700MHz Pentium III with 256MB of memory and
a 256KB L2 cache. The test harness consists of a packet
source element feeding fake UDP packets through an
IPRewriter and into a packet sink.

We ran two tests. In the first test, the packet source gen-
erates a uniform stream of 100 identical packets. These
identical packets create only one mapping in the IPRe-
writer, so the test measures the forwarding cost of the
IPRewriter, excluding the overhead of generating new
mappings. The median forwarding latency of IPRewriter
in this scenario is 393 cycles, or 561 ns, per packet, as
measured with Pentium performance counters.

In the second test, the packet source generates a stream
of 100 unique packets by successively incrementing the
UDP source and destination port numbers. This mea-
surement combines the overhead of packet forwarding
with the overhead of generating new mappings. Gener-
ating a new mapping involves adding two entries—one
for the forward mapping and one for the correspond-
ing reverse mapping—to a hash table. Each entry con-
sists of an integer that represents a unique flow iden-
tifier and a structure that contains information about
the mapping. The median latency for forwarding and
generating a new mapping IPRewriter is 2338 cycles,

11



or 3.34 µs, per packet. This is of course a worst-case
value, since for normal traffic not every packet will re-
sult in a new mapping being created. Furthermore, we ex-
pect to reduce this overhead considerably by improving
the implementation—the existing hash table is generic
and unoptimized. Lastly, this overhead is comparable to
that of common operations that must happen for every
packet: for example, on our hardware, device interaction
cost almost 1000 cycles per packet.

7 Related Work

The first documented IP network address translator [5]
performed address-based NAT only. Network Address
Port Translation, or NAPT, and the use of NAT for load
balancing appeared later [12, 13].

RFC 2663 lays out consistent terminology for NAT
variants [13]. Using its terminology, Click NAT elements
can perform Basic NAT with IPAddrRewriter, Network
Address Port Translation with IPRewriter, Load Shar-
ing NAT with IPRewriter plus an IPMapper element,
and limited Two-Way NAT with IPRewriter. Full Click
configurations can implement full Two-Way NAT (with
help from a DNS proxy), Twice-NAT (two IPRewriters
in different realms), and Multihomed NAT.

Hasenstein describes a wide variety of network address
translation configurations in the context of a system for
NAT in Linux [7]. All of his configurations may be easily
implemented in Click.

Cisco IOS features a flexible NAT implementation [2]
supporting static and dynamic address-based NAT,
NAPT, round-robin load sharing NAT, and combina-
tions thereof. Interfaces are divided into two classes, “in-
side” and “outside”. The translations applied to a par-
ticular packet depend on the class of interface on which
it was received, and, optionally, on its source address,
destination address, protocol, or port number. Other ar-
rangements, such as more than two classes of interface
or other load sharing arragements, appear difficult or
impossible to achieve.

Similarly, while the NAT implementations shipped
with desktop operating systems—Linux’s ipchains and
ipnat [7], BSD’s IP Filter [11], and Windows 2000’s
NAT—are flexible to different degrees, none of them ap-
pear to support multiple NAT components in a single
configuration, or allow fully flexible control over NAT
placement relative to other forwarding tasks.

Cohen et al. [4, 3] present a configurable tool for re-
mapping packet addresses and port numbers. It consists
of a kernel module that implements re-mapping with
a fixed table, and applications that add new mappings
when they observe packets from as-yet unmapped flows.
While the system can perform a wide range of NAT func-
tions, it is embedded inside a fixed router configuration;

unlike Click’s NAT tools, the way it interacts with other
forwarding functions cannot be changed.

8 Conclusion

We have presented a flexible, usable set of components
for network address translation in a modular network-
ing system, Click. These components implement only
the core functionality required of any network address
translator—namely, changing IP packet headers and find-
ing mappings corresponding to input packets’ flow iden-
tifiers. They leave other functions, such as determining
which packets should be subject to translation, to other
parts of a router configuration. This makes configura-
tions involving address translation more flexible and un-
derstandable. NAT elements can be placed in a configu-
ration exactly where they are required; packets meant
for translation can be selected in arbitrary ways; the
mechanism for choosing a translation for a new packet
is completely extensible; and multiple NAT elements can
coexist in a single configuration. The IP rewriting compo-
nents are made more useful and general by the modular
networking system of which they are a part. We demon-
strated the practical usefulness of this system with real
configurations, including an IP router with port trans-
lation (IP masquerading), a generic transparent traffic
diverter, and a real, and complex, combined firewall and
NAT configuration, and showed that the IP rewriting
elements have acceptable performance cost.

The firewalling NAT described in Section 5.3 has been
in real use routing traffic for a small startup for six
months. It, and the components described in this pa-
per, are freely available on line at http://www.pdos.lcs.
mit.edu/click/.

Acknowledgements

We thank Paul Hsiao, Sulu Mamdani, and Mazu Net-
works, Inc. for support of this project, Benjie Chen for
his initial work on the configuration described in Sec-
tion 5.3, and Frans Kaashoek and the members of MIT
LCS’s Parallel and Distributed Operating Systems group
for supporting Click.

References

[1] F. Baker. Requirements for IP Version 4 routers.
RFC 1812, Internet Engineering Task Force, June 1995.
ftp://ftp.ietf.org/rfc/rfc1812.txt.

[2] Cisco Systems. Cisco IOS Network Address Translation
(NAT). Technical report, September 1998. http://www.
cisco.com/warp/public/701/60.html, as of December
2000.

12



[3] A. Cohen, S. Rangarajan, and N. Singh. Supporting trans-
parent caching with standard proxy caches. In Proceed-
ings of the 4th International Web Caching Workshop,
1999.

[4] Ariel Cohen and Sampath Rangarajan. A programming
interface for supporting IP traffic processing. In Proc. of
IWAN ’99: Active Networks, First International Working
Conference, number 1653 in Lecture Notes in Computer
Science, pages 132–143, June 1999.

[5] K. Egevang and P. Francis. The IP Network Address
Translator (NAT). RFC 1631, Internet Engineering Task
Force, May 1994. ftp://ftp.ietf.org/rfc/rfc1631.
txt.

[6] T. Hain. Architectural implications of NAT. RFC 2993,
Internet Engineering Task Force, November 2000. ftp://
ftp.ietf.org/rfc/rfc2993.txt.

[7] Michael Hasenstein. IP network address translation.
Diplomarbeit, Technische Universität Chemnitz, Chem-
nitz, Germany, 1997. Available on line at http://www.
suse.de/˜mha/linux-ip-nat/diplom/nat.html as of De-
cember 1, 2000.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(4), November
2000.

[9] E. Nordmark. Stateless IP/ICMP Translation algorithm
(SIIT). RFC 2765, Internet Engineering Task Force,
February 2000. ftp://ftp.ietf.org/rfc/rfc2765.txt.

[10] J. Postel and J. Reynolds. File Transfer Protocol (FTP).
RFC 959, Internet Engineering Task Force, October
1985. ftp://ftp.ietf.org/rfc/rfc0959.txt.

[11] Darren Reed. IP Filter TCP/IP packet filtering pack-
age. Technical report, 2000. http://coombs.anu.edu.
au/˜avalon/, as of December 2000.

[12] P. Srisuresh and D. Gan. Load sharing using IP Network
Address Translation (LSNAT). RFC 2391, Internet Engi-
neering Task Force, August 1998. ftp://ftp.ietf.org/
rfc/rfc2391.txt.

[13] P. Srisuresh and M. Holdrege. IP Network Address Trans-
lator (NAT) terminology and considerations. RFC 2663,
Internet Engineering Task Force, August 1999. ftp://
ftp.ietf.org/rfc/rfc2663.txt.

[14] P. Srisuresh, G. Tsirtsis, P. Akkiraju, and A. Heffer-
man. DNS extensions to Network Address Translators
(DNS ALG). RFC 2694, Internet Engineering Task Force,
September 1999. ftp://ftp.ietf.org/rfc/rfc2694.
txt.

[15] G. Tsirtsis and P. Srisuresh. Network Address
Translation—Protocol Translation (NAT-PT). RFC 2766,
Internet Engineering Task Force, February 2000. ftp://
ftp.ietf.org/rfc/rfc2766.txt.

13


