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ABSTRACT

As engineers continue to develop more sophisticated algorithms to optimize cryptographic

algorithms, their often simple mathematical specifications become convoluted in the algo-

rithms, from which a class of correctness bugs arise. Because cryptographic algorithms often

secure sensitive information, their correctness, and in turn their security is a top priority.

The Number Theoretic Transform (NTT) is an algorithm that enables efficient polynomial

multiplication and has recently gained importance in post-quantum cryptography. This the-

sis presents a proof of correctness of the NTT in F⋆, a proof-oriented programming language

that extracts to OCaml, and shows that we can use the NTT to perform polynomial multipli-

cations. We provide an implementation of the Cooley-Tukey fast NTT algorithm and a proof

that it matches the original NTT specification. This thesis also presents a representation of

polynomials in the F⋆ subset Low*, which extracts to performant C code.
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Chapter 1

Introduction

1.1 Motivation

Cryptographic algorithms are backed by assumed hardness of core mathematical problems.

Cryptographic algorithms are proven to satisfy a property, for which people write optimized

algorithms. Algorithm optimizations are complicated, increasing potential for bugs as the

optimizations stray further from the specifications. Even widely used cryptographic libraries

like OpenSSL have been found to have bugs, and even minor bugs could lead to critical

vulnerabilities [1].

Formal verification is a technique that provides guarantees that an implementation sat-

isfies a specification. Though writing verified code requires greater effort, in certain appli-

cations where the cost of writing buggy code is much greater, the effort can be well worth

it. By writing specifications and mechanical proofs for cryptographic algorithms, we can

mitigate security risks from this class of bugs.

Recent years have seen a substantial research effort in quantum computation, which can

solve problems that are difficult or intractable on a conventional computer. Advancements in

these technologies would break many cryptosystems that are currently in use. Post-quantum

cryptography aims to develop cryptosystems that are secure against both conventional and

15



quantum computers. Although we do not yet know when the first physical quantum comput-

ers will be built, modern public key cryptography has taken almost two decades to deploy [2],

so it is imperative to begin work on quantum-resistant cryptography well before a physical

quantum computer is created.

The use of polynomials is widespread in both traditional and post-quantum cryptographic

algorithms. The Number Theoretic Transform (NTT) is a powerful mathematical tool that

has become important in many post-quantum cryptographic algorithms. A naive multiplica-

tion of two n degree polynomials requires multiplying every pair of coefficients, for a resulting

O(n2) multiplications. Converting to the NTT domain allows us to multiply two polynomials

elementwise with the property that the product polynomial will be equivalent to polynomial

multiplication when we convert it back to the original domain [3]. While the naive conversions

to and from the NTT domain are still O(n2), the Cooley-Tukey NTT and Gentleman-Sande

INTT algorithms allow for O(n log n) conversions [4]. Thus, we can use the Cooley-Tukey

NTT algorithm to convert two polynomials to the NTT domain in O(n log n), perform our co-

efficientwise multiplication inO(n), and use the Gentleman-Sande INTT algorithm to convert

the result back in O(n log n). In total, this yields a O(n log n) +O(n) = O(n log n) < O(n2)

runtime.

The National Institute of Standards and Technology (NIST) have three post-quantum

candidates for standardization, two of which use the NTT internally. ML-KEM/FIPS-203

is a lattice-based algorithm and one of the two candidates that uses the NTT [5].

F⋆ is a proof-oriented language with a rich type system that allows users to restrict

types to certain values, for example, as well as specify pre- and post-conditions of func-

tions and prove that the implementation matches that specification [6]. HACL⋆ is an F⋆

library containing many cryptographic structures and is already used in production systems

[7]. HACL⋆ also has a verified implementation of FrodoKEM, a lattice-based post-quantum

cryptographic algorithm that was previously a candidate for standardization [8], but does

not use polynomial multiplication.

16



We provide an F⋆ representation of polynomials along with proofs about their operations,

including multiplication using the NTT, in hopes that this functionality will allow for a more

streamlined experience for future engineers.

1.2 A Verified Number Theoretic Transform in F⋆

HACL⋆ implements many cryptographic algorithms, but missing from its library are inter-

faces for modular integer arithmetic. To reason about polynomials and multiplication under

the NTT, we require some way to represent sums of integers under a modulus, the modular

inverse, and roots of unity modulo some modulus m [3].

The goal of this thesis is to provide a verified implementation of the NTT and a fast

NTT algorithm in F⋆, which extracts to OCaml to yield an executable version of the NTT.

ML-KEM uses a specific prime number q which we tailor our implementation of polynomials

of integers modulo q to match, though a more general library requires minimal changes to

the code. Changing to a different prime q requires no additional changes, given that the

prime is sufficiently small. Note that for the NTT proofs, we require that there exists a

2n-th root of unity modulo q.

The F⋆ code can also act as a specification for a Low* implementation, which extracts to

C for a performant polynomial multiplication algorithm ready for use in real world systems.

This thesis provides a starting point for a Low* implementation, with a memory-safe repre-

sentation of polynomials using memory safe fixed-length buffers equipped with addition and

scalar multiplication.

1.3 Thesis contributions

This thesis makes the following contributions:

1. F⋆ representations of mathematical sums of modular integers, primitive roots of unity,

17



and polynomials.

2. F⋆ proofs about properties of the above representations.

3. A proof of correctness that component-wise multiplication in the NTT domain is equiv-

alent to polynomial multiplication in the quotient ring, mechanized in F⋆.

4. An F⋆ implementation of the Cooley-Tukey NTT algorithm, and an F⋆ proof that it

matches the NTT specification proven to be correct above.

5. A Low* representation of polynomials, as well as implementations for addition and

scalar multiplication proven to match simple F⋆ specifications.

The F⋆ code for this thesis, as well as a Makefile to extract to OCaml can be found at

https://github.com/rickono/hacl-star, in the code/mlkem directory.

1.4 Thesis outline

Chapter 2 of this thesis provides some background information on the F⋆ proofs, the NTT,

and mathematical properties needed to prove the NTT. Chapter 3 discusses the F⋆ speci-

fication for the NTT and the mathematical structures required to represent it. Chapter 4

dives further into the proof details, including techniques to prove the mathematical lemmas

and a sketch of the main correctness proof. Chapter 6 provides an evaluation of an extracted

OCaml version of the fast NTT. Chapter 7 discusses some of the decisions made in proving

the NTT. Chapters 8 and 9 presents some ideas for future work and related work in the field.

Finally, chapter 10 concludes this thesis.
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Chapter 2

Background

2.1 Formal Verification in F⋆

F⋆ is a dependently-typed programming language and proof assistant. We use F⋆ in a proof-

oriented manner to simultaneously design programs and prove properties about them.

As a dependently-typed language, F⋆ types can reason about their values. For example,

we can say that a function times_two takes a natural number and returns an even natural

number.

1 let times_two (n:nat): r:nat{r % 2 = 0} = 2 * n

This snippet initializes the function times_two, which has a parameter n that is a natural

number. The return value r, also a natural number has a refinement type indicated by

{r % 2 = 0}, restricting r to the elements in the set of natural numbers for which r % 2 = 0

evaluates to true.

We can also introduce lemmas, which are F⋆ functions which always return the ():unit

value. The type of the lemma contains pre- and post-conditions. If we want to prove that

the output of factorial is greater than its argument, we could do that in a lemma.

1 let rec factorial (n:nat) =

2 if n = 0 then 1

19



3 else n * factorial (n - 1)

4 val factorial_gt_arg: (x:int)

5 -> Lemma (requires x > 2) (ensures factorial x > x)

This property could be written in F⋆ as an assertion.

1 assert (forall (x:int). x > 2 ==> factorial x > x)

However, F⋆ is unable to prove the assertion, but not because the fact is untrue. We require

a proof by induction to prove this fact, which F⋆ is not able to do on its own. We can help

F⋆ by writing a lemma.

In a traditional mathematical proof, we might start with the base case 3, for which we

know that the 3! = 6 > 3. Then we can use weak induction to prove for all arguments

greater than 3. F⋆ allows us to apply the same logic by recursively applying our lemma.

1 let rec factorial_gt_arg x =

2 if x = 3 then ()

3 else factorial_gt_arg (x-1)

Invoking a lemma adds its post-condition to the proof context, given the pre-conditions are

satisfied.

2.2 Fast polynomial multiplication

Cryptographic algorithms often require multiplying large polynomials, naively an O(n2)

algorithm that we can speed up to O(n log n) using a fast NTT algorithm such as the

Cooley-Tukey NTT. We break the proof of the fast NTT into two major steps:

1. Prove that the NTT and INTT allow for polynomial multiplication.

2. Prove that the fast NTT and fast INTT algorithms match the NTT and INTT that

we specified.

20



2.2.1 Multiplication in the NTT domain

We first aim to prove that coefficientwise multiplication in the NTT domain corresponds to

quotient-ring multiplication in the original domain. This allows for O(n) multiplications,

not including the conversion between domains.

INTT(NTT(f)⊙ NTT(g)) = f · g

where ⊙ denotes componentwise multiplication.

The underlying algebraic proof depends on two main theorems, the reversibility of the

NTT and the convolution theorem which relates coefficientwise multiplication to multiplica-

tion in the quotient-ring [3].

The NTT proof relies on sums of an arbitrary function
∑

i f(i), along with various prop-

erties of these sums, primitive roots of unity mod m, that is an integer ψ where ψn = 1

mod m, and modular inverse. Neither F⋆ nor HACL⋆ have these constructs so this thesis

includes a representation for these mathematical tools as well as proofs to reason about them

[3].

2.2.2 The fast NTT

While the NTT specification is indeed sufficient to prove correctness, the naive algorithm

is O(n2), and requires a more efficient algorithm such as the Cooley-Tukey NTT algorithm

to reap the performance benefits [4]. The Cooley-Tukey NTT algorithm is a divide and

conquer algorithm that splits the polynomial on its even and odd terms, reducing runtime

to O(n log n).
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2.3 Notation

Our notation will match the mathematical symbols used in Kyber, an earlier version of ML-

KEM, for simplicity. Kyber is being integrated into industry systems including Cloudflare

and Amazon AWS [9]. The F⋆ proofs in this thesis generalize to polynomials outside of the

specific polynomials used in Kyber.

• Zm: The ring of integers modulo m.

• fi: The coefficient of X i of the polynomial f .

• n: The constant integer 256.

• q: The prime integer 7681.

• Rq: The ring Zq[X]/(Xn + 1), equipped with addition and multiplication modulo

Xn + 1.

• Tq: The image of Rq under the NTT.
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Chapter 3

Approach

This chapter discusses the high-level approach for proving NTT in F⋆. This section will

focus on the mathematical proofs required for proving NTT, and F⋆ structures that needed

to be implemented to support these proofs. Many proof details will be glossed over and will

be explored further when we discuss the F⋆ proof.

3.1 Proof goals

The goal of the NTT is to transform polynomials into a domain in which multiplications

can be reduced to O(n). While componentwise multiplication can trivially be done in O(n),

O(n log n) transformations in and out of the NTT domain are tricky, as a naive implemen-

tation of the specification is still O(n2). For our proof of the fast NTT, we break the NTT

proof into two main goals:

1. Prove that componentwise multiplication in the NTT domain yields multiplication in

the original domain:

f · g = INTT(NTT(f)⊙ NTT(g))

2. Prove correctness of O(n log n) implementations of the NTT and INTT.
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With these two facts proven, we can use our O(n log n) algorithms to convert polynomials

in and out of the NTT domain, and be confident that componentwise multiplication of the

output polynomials yields multiplication of the original polynomials [3]. We can write these

goals in F⋆ as simple lemmas.

1 val mul_ntt_ok:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> g:lpoly n

6 -> Lemma

7 (ensures equal

8 (mul_quotient_ring f g)

9 (intt #n #psi

10 (mul_componentwise (ntt #n #psi f) (ntt #n #psi g))))

11

12 val cooley_tukey_ok:

13 #n:power_of_two {2 * n < q}

14 -> #psi:primitive_nth_root_of_unity_mod #q (2*n)

15 -> f:lpoly n

16 -> Lemma (equal (ntt #n #psi f) (ntt_ct #n #psi f))

3.1.1 Multiplication specification

Our top level specification is for multiplication in the quotient ring, and it is important we

define it precisely.

We define multiplication in the quotient ring.

(f · g)k =
n−1∑
j=0

(−1)k−j div nfjgk−j mod n (3.1)
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1 let mul_quotient_ring_kth_term #n f g k =

2 if k < 0 || k >= n then 0

3 else sum_of_zqs 0 n

4 (fun j

5 -> (pow_mod_int_neg_one ((k - j) / n))

6 %* (( poly_index f j) %* poly_index g ((k - j) % n)))

3.2 Proving NTT allows multiplication

We define the coefficient definitions of the NTT, INTT, and coefficient multiplication

(f ⊙ g)k = fk · gk

NTT(f)k =
n−1∑
j=0

fjψ
j·(2k+1)

INTT(f)k = n−1 ·
n−1∑
i=0

fiψ
−k·(2i+1)

where ψ is a 2n-th root of unity mod q. It is important to note that all operations are done

modulo q, and n−1 represents the modular inverse of n.

There are two main proofs that are necessary to prove that componentwise multiplication

in Tq is equivalent to multiplication modulo Xn + 1 in Rq. These two proofs combine easily

to prove our first of two large proof goals.

1. NTT is reversible: INTT(NTT(f)) = f

2. Convolution theorem: NTT(f · g) = NTT(f)⊙ NTT(g)

Given both of these facts are true, applying INTT to both sides of the convolution

theorem statement gives us:
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INTT(NTT(f)⊙ NTT(g)) = INTT(NTT(f · g))

= f · g

Therefore, if we have algorithms for INTT and NTT, we can use coefficient-wise multi-

plication instead of using naive multiplication in the quotient ring.

3.2.1 NTT is reversible

To prove that NTT is reversible, we prove the equality for each coefficient, from which the

equality of the entire polynomial should immediately follow.

Unfolding NTT and INTT gives us the expression

INTT(NTT(f))k = n−1

(
n−1∑
i=0

(
n−1∑
j=0

fjψ
j(2i+1)

)
ψ−k(2i+1)

)

A series of basic sum and modular exponentiation properties allow us to rearrange this,

which we cover in more detail in section 4.4.1.

INTT(NTT(f))k = n−1

n−1∑
j=0

fjψ
j−k

(
n−1∑
i=0

(
ψ2(j−k)

)i)

Notice that the right summation is a geometric sum. If j = k, then this sum is simply a

sum over 1s, resulting in n. Otherwise, the sum collapses to zero because ψ is a 2n-th root

of unity, and thus ψ2n(j−k) = 1j−k = 1.

n−1∑
i=0

(ψ2(j−k))i =
ψ2(j−k)n − 1

ψ2(j−k) − 1
= 0

This allows us to evaluate the outer sum as well, as j = k in only one instance, and we
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end up with

n−1fkψ
k−kn = n−1nfk = fk

3.2.2 Convolution theorem

To prove the convolution theorem we again prove equality for each coefficient individually.

Unfolding NTT(f · g)k and rewriting the resulting expression gives us

NTT(f · g)k =
n−1∑
i=0

(
n−1∑
j=0

(−1)i−j div nfjgi−j mod n

)
ψi(2k+1)

=
n−1∑
j=0

fjψ
j(2k+1)

(
n−1∑
i=0

(−1)i−j div nψi(2k+1)ψ−j(2k+1)gi−j mod n

)

Using the definition of modulo and ψn = −1, we know that

(−1)i−j div nψi(2k+1)ψ−j(2k+1) = ψ(i−j mod n)(2k+1)

which we can apply to our previous calculation

=
n−1∑
j=0

fjψ
j(2k+1)

(
n−1∑
i=0

ψ(i−j mod n)(2k+1)gi−j mod n

)

=
n−1∑
j=0

fjψ
f(2k+1) ·

n−1∑
i′=0

ψi′(2k+1)gi′

= NTT(f)k · NTT(g)k

While these two proofs allow us to convert between Rq and Tq and prove that we can

use elementwise multiplications in Tq to compute multiplication in Rq, the simple coefficient

specifications we gave for NTT and INTT still involve doing O(n2) operations. For a verified

fast polynomial multiplication algorithm, we must implement more efficient NTT and INTT

algorithms, and prove that they match our initial specifications.
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3.3 The Cooley-Tukey NTT algorithm

The Cooley-Tukey NTT algorithm allows us to translate a polynomial into the NTT domain

using a divide and conquer algorithm with a time complexity represented by the recurrence

T (n) = T (n/2) + Θ(n) = O(n log n)

If we then prove NTTCT(f) = NTT(f) for all polynomials f , we can use the Cooley-Tukey

NTT with confidence that it behaves identically to our verified specification.

As with the NTT correctness proofs, we find it useful to reason about each of the terms

in the Cooley-Tukey NTT and relate them to our original NTT specification and first prove

NTTCT(f)k = NTT(f)k. We define the kth term of the Cooley-Tukey NTT, NTTCT(f)k as

NTTCT(f)k = NTTCT(feven)k + ψ2k+1 · NTTCT(fodd)k

for k < n/2 and

NTTCT(f)k = NTTCT(feven)k − ψ2k+1 · NTTCT(fodd)k

for k ≥ n/2, where

feven = f0 + f2X
2 + · · ·+ fnX

n and fodd = f1X + f3X
3 + · · ·+ fn−1X

n−1

allowing us to compute two terms of the NTT with just one additional operation.

For the proof of correctness it is again useful to look at individual coefficients. We

can manipulate the specification for the kth term of the NTT to match our Cooley-Tukey

specification.
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NTT(f)k =
n−1∑
j=0

fjψ
j·(2k+1) (3.2)

=

n/2−1∑
j=0

f2j · ψ2j·(2k+1) +

n/2−1∑
j=0

f2j+1 · ψ(2j+1)·(2k+1) (3.3)

=

n/2−1∑
j=0

f2j · ψ2j·(2k+1) + ψ2k+1 ·
n/2−1∑
j=0

f2j+1 · ψ(2j+1) (3.4)

= NTT(feven)k + ψ2k+1 · NTT(fodd)k (3.5)

Using strong induction, we can easily prove that NTT(f)k = NTTCT(f)k, for polynomials

f with degree that is a power of two minus one. The base case for a degree 0 polynomial

proceeds trivially as we use the original specification to dictate the behavior of NTTCT for

the base case [4].

3.4 F⋆ interfaces and lemmas

There are several concepts necessary for these mathematical proofs for which F⋆ did not have

a representation:

• Fixed-degree polynomials of integers modulo a modulus m

• Sums of integers modulo a modulus m

• Modular exponentiation with negative exponents (modular inverse)

• Roots of unity modulo a modulus m

3.4.1 F⋆ polynomial representation

For our proofs, we use a coefficient representation of polynomials. We use a natural repre-

sentation in F⋆: lpoly, defined as a sequence of zq, integers modulo q. Our polynomials
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are written using a fixed q, but can be modified to accommodate any modulus. We use the

nat_mod from the HACL⋆ library, defined as a natural number less than a given positive

modulus m.

1 let nat_mod (m:pos) = n:nat{n < m}

2 ...

3 let zq = nat_mod q

4 let lpoly deg = lseq zq deg

3.4.2 F⋆ sum representation

We represent a sum of integers ∈ Zq as a function that takes the bounds of the sum, and a

function that takes an integer and returns an integer ∈ Zq. The sum is calculated recursively

by adding the function applied to the current upper bound to the rest of the sum.

1 let rec sum_of_zqs (start:int) (stop:int) (f:(i:int -> zq))

2 : Tot zq (decreases stop - start) =

3 if start >= stop then 0

4 else f (stop - 1) +% (sum_of_zqs start (stop - 1) f)

We discuss specific lemmas about sums along with details about their proofs in section

4.2.

3.4.3 Modular exponentiation and inverse

F⋆ has a function pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m,

which implments ab mod m, but requires b to be a natural number. NTT requires the

concept of modular inverses. While one option would be to introduce one function, perhaps

mod_inverse that takes a natural number modulo m, and returns its modular inverse, mod-

ular inverses also allow us to treat the exponent similarly to normal integer exponentiation,

which simplifies working with the exponents. Thus we define a function pow_mod_int, which
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allows b to be any integer, and treats a negative exponent as a modular inverse composed

with the original pow_mod.

1 let pow_mod_int #m a b =

2 if b >= 0 then

3 pow_mod #m a b

4 else

5 pow_mod #m a ((-b) * (m - 2))

To tie the exponent properties with modular inverse, we need to prove the definition of

modular inverse, a1 · a−1 = 1, and then prove that this new pow_mod_int still allows us to

use the following exponent rules:

• 0b = 0

• 1b = 1

• a0 = 1

• a1 = a

• abac = ab+c

• (ab)c = abc

These proofs are somewhat tedious, but simply involve converting pow_mod_int to the

existing pow_mod and working through both positive and negative cases.

3.4.4 The F⋆ root of unity type

Our NTT and INTT proofs require ψ to be a primitive 2n-th root of unity mod q, as we

need to exploit some of the properties of the roots of unity. An n-th root of unity under

some modulus m is defined as an integer ω such that ωn = 1 and ω ̸= 0 mod m.

We can write a predicate for an n-th root of unity rather directly, and use it to define a

generic n-th root of unity type.
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1 let is_nth_root_of_unity_mod

2 (#m:prime{m > 2}) (n:nat{n > 0}) (root:nat_mod m)

3 = pow_mod #m root n == 1 /\ root % m <> 0

4 let nth_root_of_unity_mod

5 (#m:prime{m > 2}) (n:nat{n > 0})

6 = root:nat_mod m{is_nth_root_of_unity_mod #m n root}

For ω to be a primitive n-th root of unity, it is required that ω is the smallest n-th root of

unity. We can compose the two predicates to make a type for primitive n-th roots of unity.

1 let is_primitive

2 (#m:prime{m > 2}) (#n:nat{n > 0}) (a:nat_mod m)

3 = (forall (k:nat{k < n}). pow_mod #m a k <> 1)

4

5 let is_primitive_nth_root_of_unity_mod

6 (#m:prime{m > 2}) (n:nat{n > 0}) (root:nat_mod m)

7 = is_nth_root_of_unity_mod #m n root /\ is_primitive #m #n root

8

9 let primitive_nth_root_of_unity_mod

10 (#m:prime{m > 2}) (n:nat{n > 0})

11 = root:nat_mod m{is_primitive_nth_root_of_unity_mod #m n root}
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Chapter 4

Proving NTT correctness in F⋆

4.1 General proof development

F⋆ proofs rely on Z3, an SMT solver that relies on specific heuristics. Small changes in a

query can greatly impact the solver’s performance. To keep the search space small, it is often

beneficial to break F⋆ proofs into the smallest pieces of logic possible to later be composed

into larger proofs. For example the algebraic proof for the reversibility of NTT can be

roughly broken into ten small steps that manipulate the definition of NTT. Attempting to

bundle the entire proof into one F⋆ function has far too large of a search space and will fail

to verify, while breaking the ten steps into separate lemmas, and invoking each allows F⋆ to

verify the theorem.

For this reason it is useful in F⋆ to have a vision of the entire proof before diving into proof

details, as this makes it much easier to break the proof into components. This approach also

allows the engineer to write the types for each of the lemmas, admitting the proof for each

step, to increase confidence that the proof will verify before spending time on implementation

details.
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4.2 Lemmas about sums

Instead of working with function extensionality f = g, we explicitly state in the preconditions

of the lemmas our definition of function equality: that two functions are to be considered

equivalent if they produce the same value for inputs between start and stop in a sum. If

we know that two functions are equal by this definition, we can safely swap the function to

be evaluated in our sum, allowing us to manipulate sums.

1 let rec sum_rewrite_lemma (start stop:int) (f g:int -> zq): Lemma

2 (requires (forall (i:int).{: pattern (f i)} start <= i /\

3 i < stop ==> f i == g i))

4 (ensures (sum_of_zqs start stop f) == (sum_of_zqs start stop g))

5 (decreases (stop - start))

6 [SMTPat (sum_of_zqs start stop f)]

7 =

8 if start < stop then sum_rewrite_lemma start (stop - 1) f g

We attach an SMTPat to this lemma, so if Z3 sees a sum, and sees the precondition

satisfied, it tries to apply this lemma. Many proofs about sum equality followed the same

general process:

1. Prove an auxiliary lemma aux that the two function bodies are equal for some unre-

stricted integer input i.

2. Invoke Classical.forall_intro aux, which introduces forall i. aux i into the

context. Given an unpolluted local context, the aforementioned SMT pattern allows

the equality of sums to go through. If this fails to verify, it could be a sign that the

proof has become too large.
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4.2.1 Inductive proofs about sums

n∑
i=m

a · f(i) = a

n∑
i=m

f(i) (4.1)

On paper, it appears that the proof
∑n

i=m a · f(i) = a
∑n

i=m f(i) should follow rather

directly from the definitions of sum and the distributive property of addition. However this

would require us to convert the sum into an n-ary addition operation and proving an n-ary

distributive property. Written recursively, the proof lends itself to induction, in which we

can apply the distributive property of addition to a binomial addition. Many of our proofs

about sums follow an inductive structure.

The base case m = n goes through with a lemma lemma_sum_none that simply states

that
∑n

i=n = 0, to which we attach an SMT pattern.

1 let rec sum_mul_lemma (a:zq) (start stop:int) (f:int -> zq): Lemma

2 (ensures mul_zq a (sum_of_zqs start stop f) == sum_of_zqs start

stop (fun i -> mul_zq a (f i)))

3 (decreases (stop - start))

4 [SMTPat (sum_of_zqs start stop (fun i -> a %* (f i)))] =

5 if start < stop then (

6 sum_mul_lemma a start (stop - 1) f;

7 calc (==) {

8 mul_zq a (sum_of_zqs start stop f);

9 (==) {}

10 a %* (( sum_of_zqs start (stop - 1) f) +% f (stop - 1));

11 (==) {lemma_mod_distributivity_add_right #q a (sum_of_zqs start

(stop - 1) f) (f (stop - 1))}

12 (a %* (sum_of_zqs start (stop - 1) f)) +% (a %* f (stop - 1));

13 }

14 )

35



Here, in our proof body we invoke the inductive hypothesis, which introduces

stop−2∑
i=start

a · f(i) = a

stop−2∑
i=start

f(i)

to the context. calc (==) allows us to chain equivalent terms. We unfold the original sum,

apply the distributivity of addition lemma, and the inductive hypothesis allows us to finish

the rest of the proof.

The lemma for the linearity property of sums

m∑
i=n

f(i) + g(i) =
m∑
i=n

f(i) +
m∑
i=n

g(i) (4.2)

proceeds similarly by induction by unfolding the sum, and applying the definition of sums.

1 let rec lemma_sum_linearity (start stop:int) (f:int -> zq) (g:int ->

zq): Lemma

2 (ensures sum_of_zqs start stop (fun i -> f i +% g i) ==

sum_of_zqs start stop f +% sum_of_zqs start stop g)

3 (decreases stop - start)

We also require interchanging the order of summation

∑
i

∑
j

f(i, j) =
∑
j

∑
i

f(i, j) (4.3)

Most proofs rely on a matrix representation of a double sum, in which entries in the matrix

are added together, claiming that swapping the order of the sums does not affect the resulting

sum, per the commutative property of addition. In our representation of the sum this kind

of proof is not possible, and we use an inductive proof here as well. Unfolding both sums

reveals four terms, to which when we invoke the inductive hypothesis it becomes obvious
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that the sums are equivalent.

m∑
i=n

m′∑
j=n′

f(i, j) =
m−1∑
i=n

m′−1∑
j=n′

f(i, j) +
m−1∑
i=n

f(i,m′ − 1) +
m′−1∑
j=n

f(m− 1, j) + f(m− 1,m′ − 1)

=
m′−1∑
j=n′

m−1∑
i=n

f(i, j) +
m−1∑
i=n

f(i,m′ − 1) +
m′−1∑
j=n

f(m− 1, j) + f(m− 1,m′ − 1)

=
m′∑

j=n′

m∑
i=n

f(i, j)

Our inductive hypothesis allows to flip the sum order for the first term, and the remaining

terms are equivalent if start with the reversed sum.

1 let rec swap_sum_order (start1 stop1 start2 stop2:int) (f:int -> int

-> zq): Lemma

2 (requires stop1 > start1 /\ stop2 > start2)

3 (ensures

4 sum_of_zqs start1 stop1

5 (fun i -> sum_of_zqs start2 stop2 (fun j -> f i j)) ==

6 sum_of_zqs start2 stop2

7 (fun j -> sum_of_zqs start1 stop1 (fun i -> f i j)))

8 (decreases (stop1 - start1))

The following lemmas are necessary to prove the NTT and proceed similarly by induction.

Additivity of summation
b−1∑
i=a

f(i) +
c∑

i=b

f(i) =
c∑

i=a

f(i) (4.4)

1 let rec lemma_sum_join (i j k:int) (f:int -> zq): Lemma

2 (requires i <= j /\ j <= k)

3 (ensures sum_of_zqs i k f == sum_of_zqs i j f +% sum_of_zqs j k f)

4 (decreases (k - j))
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Shift property
m∑
i=n

f(i) =
m+k∑
i=n+k

f(i− k) (4.5)

The F⋆ specification is more general than the above equation, and we can capture the shifted

equation by using g(i) = f(i− k).

1 let rec lemma_sum_shift (start stop:int) (shift:int) (f g:int -> zq):

Lemma

2 (requires (forall (i:int).

3 start <= i /\ i < stop ==> f i == g (i + shift)))

4 (ensures sum_of_zqs start stop f ==

5 sum_of_zqs (start + shift) (stop + shift) g)

6 (decreases (stop - start))

Geometric sum
n−1∑
i=0

ai = (an − 1) · (a− 1)−1 (4.6)

1 let rec lemma_geometric_sum (stop:pos) (a:zq): Lemma

2 (requires a % q <> 1)

3 (ensures sum_of_zqs 0 stop (fun i -> pow_mod_int #q a i) ==

4 (( pow_mod_int #q a stop) -% 1)

5 %* (pow_mod_int #q ((a - 1) % q) (-1)))

6 (decreases stop)

We also need to split the sum into odd and even terms for the fast NTT algorithm.

n−1∑
i=0

f(i) =

n/2−1∑
i=0

f(2i) +

n/2−1∑
i=0

f(2i+ 1) (4.7)

1 let rec lemma_sum_split_parity (stop:nat{stop % 2 = 0}) (f:int -> zq)

: Lemma

2 (requires stop >= 0)
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3 (ensures sum_of_zqs 0 stop f == sum_of_zqs 0 (stop /2) (fun i -> f

(2 * i)) +% sum_of_zqs 0 (stop /2) (fun i -> f (2 * i + 1)))

Unfolding and both sums allows this proof to go through with induction.

4.2.2 Other proofs about sums

In the event that we have a geometric sum on ones from 0 to some stop, the sum evaluates

to stop.
n−1∑
i=0

1i = n mod m (4.8)

1 let lemma_geometric_sum_ones (stop:pos) (a:zq): Lemma

2 (requires a % q = 1)

3 (ensures sum_of_zqs 0 stop (fun i -> pow_mod_int #q a i) == stop %

q)

A sum of any number of zeros is always zero.

n−1∑
i=0

0 = 0 (4.9)

1 let rec lemma_sum_zeros (start stop:nat): Lemma

2 (requires start <= stop)

3 (ensures sum_of_zqs start stop (fun i -> 0) == 0)

To prove the convolution theorem, we need to reindex a sum.

n−1∑
i=0

f(i− j mod n) =
n∑

i′=0

f(i′) (4.10)

The above property is intuitively true because of the cyclic nature of modulo. For any shift

j, the sum still cycles through all integers 0 to n. If F⋆ we prove this lemma by breaking
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the sum into two sums at j mod n, manipulating them separately, and joining them back

together.

1 let lemma_sum_shift_mod (stop:nat{stop > 0}) (j:int) (f:int -> zq):

2 Lemma

3 (sum_of_zqs 0 stop f == sum_of_zqs 0 stop (fun i -> f ((i - j) %

stop)))

4.3 Lemmas about modular arithmetic and roots of unity

4.3.1 Modular arithmetic

The NTT requires the concept of a modular inverse, which the F⋆ nat_mod does not support.

We use Fermat’s Little Theorem to prove our definition of the modular inverse. Here, we

give implement a new pow_mod_int function that allows the exponent to be any arbitary

integer, and in our lemma define what the negative exponent means.

1 val pow_mod_int:

2 #(m:prime)

3 -> (a:nat_mod m)

4 -> (b:int)

5 -> nat_mod m

6 let pow_mod_int #m a b =

7 if b >= 0 then

8 pow_mod #m a b

9 else

10 pow_mod #m a ((-b) * (m - 2))

11

12 val lemma_pow_mod_inv_def_nat:

13 #m:prime
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14 -> a:nat_mod m{a % m <> 0}

15 -> b:nat

16 -> Lemma (pow_mod_int #m a b * pow_mod_int #m a (-b) % m == 1)

This is sufficient to define pow_mod_int, but we can no longer apply the same algebraic

rules to these exponents. For instance, we can no longer say that ab · ac = ab+c. For most of

these lemmas, we reprove these algebraic properties by dividing into three cases:

• Both exponents are positive, in which case we can use the corresponding lemma for

pow_mod

• Both exponents are negative.

• One exponent is positive and one is negative.

4.3.2 Roots of unity

There are several lemmas about roots of unity that we require for our proofs of the NTT.

For a 2n-th root of unity ψ, we require

• ψn/2 = −1

• ψ2 is a primitive n-th root of unity

The first lemma takes a prime number m and natural number n, and says that for a

primitive 2nth root of unity ψ, ψn/2 = −1 mod m for all even n.

1 val lemma_primitive_unity_half_n:

2 #m:prime{m > 2}

3 -> #n:nat{n > 0}

4 -> a:primitive_nth_root_of_unity_mod #m n

5 -> Lemma (requires n % 2 == 0)

6 (ensures pow_mod_int #m a (n / 2) == (-1) % m)
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The mathematical proof for this proceeds as follows. Let k = n/2.

1 = a2k mod m

= (ak)2 mod m

We know that for any x, x2 = 1 mod m =⇒ x = 1 or x = −1. Since we know that k < n,

we know that ak = −1 by the definition of a primitive root of unity (that there is no smaller

root of unity). The F⋆ proof follows these same steps:

1 val lemma_unit_roots:

2 #m:prime{m > 2}

3 -> x:nat_mod m

4 -> Lemma

5 (pow_mod_int #m x 2 == 1 ==> x == (1 % m) \/ x == ((-1) % m))

6

7 let lemma_primitive_unity_half_n #m #n a =

8 let k = n / 2 in

9 calc (==) {

10 1;

11 (==) {}

12 pow_mod_int #m a (k * 2);

13 (==) {lemma_pow_mod_int_mul #m a k 2}

14 pow_mod_int #m (pow_mod_int #m a k) 2;

15 };

16 lemma_unit_roots #m (pow_mod_int #m a k);

17 assert (pow_mod_int #m a k == (1 % m)

18 \/ pow_mod_int #m a k == ((-1) % m))

We also require the fact that ψ2 is a primitive nth roof of unity so that we can acquire a

primitive root of unity for an NTT for a polynomial with half as many terms. Let ω = ψ2.
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To prove that ω is a primitive nth root of unity, we start by proving that ω is a root of unity,

then prove that it is a primitive root of unity.

Proving that ω is an nth root of unity follows directly from the definition of roots of

unity

ωn = (ψ2)n = ψ2n = 1

We prove that this is indeed a primitive root of unity by contradiction. If we do have ωk = 1

for some k < n, this necessarily means that we also have some k′ < 2n where ψk′ = 1.

4.4 The NTT proof

For the NTT and INTT function, we define a function that calculates the k-th coefficient of

the NTT representation of a polynomial, and create an lpoly_n using this function. The

NTT specification is shown below, and the INTT is defined analogously.

1 val ntt_kth_term:

2 #n:power_of_two

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> k:int

6 -> zq

7 let ntt_kth_term #n #psi f k =

8 if k < 0 || k >= n then 0

9 else sum_of_zqs 0 n (fun j ->

10 mul_zq (poly_index f j) (pow_mod_int #q psi (j * (2 * k + 1))))

11

12 let ntt (#n:power_of_two)

13 (#psi:primitive_nth_root_of_unity_mod #q (2 * n)) (f:lpoly n)

14 =

15 createi n (fun k -> ntt_kth_term #n #psi f k)
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Recall that to prove correctness of the NTT we need to prove that NTT is reversible and

the convolution theorem. Both of these proofs rely on relatively simple rewriting of sums and

application of properties of modular exponentiation and roots of unity but require careful

compartmentalization and lemmas about sums and modular arithmetic.

The top-level theorem that verifies that our NTT and INTT definitions are sound should

simply state that component-wise multiplication in the NTT domain results in multiplication

in the quotient ring when we transform using the INTT, that is

f · g = INTT(NTT(f)⊙ NTT(g))

We can state this as a simple F⋆ lemma, using sequence equality for polynomial equality:

1 val mul_ntt_ok:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> g:lpoly n

6 -> Lemma

7 (ensures Seq.equal

8 (mul_quotient_ring f g)

9 (intt #n #psi

10 (mul_componentwise (ntt #n #psi f) (ntt #n #psi g))))

Defining the two lemmas that we need allow this proof to go through easily. The lemma

for reversibility simply states that f = INTT(NTT(f)).

1 val intt_ntt_is_id:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> Lemma (ensures equal f (intt #n #psi (ntt #n #psi f)))
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The convolution theorem relates multiplication in the quotient ring to component-wise

multiplication in the NTT domain, NTT(f · g) = NTT(f)⊙ NTT(g).

1 val convolution_theorem:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> g:lpoly n

6 -> Lemma

7 (ensures equal

8 (ntt #n #psi (mul_quotient_ring f g))

9 (mul_componentwise (ntt #n #psi f) (ntt #n #psi g)))

Given these two lemmas, it is easy to prove our original correctness theorem.

1 let mul_ntt_ok #n #psi f g =

2 convolution_theorem #n #psi f g;

3 assert (Seq.equal

4 (intt #n #psi (ntt #n #psi (mul_quotient_ring f g)))

5 (intt #n #psi

6 (mul_componentwise (ntt #n #psi f) (ntt #n #psi g))));

7 intt_ntt_is_id #n #psi (mul_quotient_ring f g);

8 assert (mul_quotient_ring f g == intt #n #psi (mul_componentwise (

ntt #n #psi f) (ntt #n #psi g)))

Invoking our two lemmas allows the proof to verify without much added work. The next

two sections discuss the proof strategy for these two lemmas.

4.4.1 NTT is reversible

To prove that NTT is reversible, we prove equality each term k. We split the proof for

intt_ntt_is_id_kth_term into steps that are easy to reason about in F⋆ individually. Writ-
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ing each step as a lemma allows us to tie them all together to prove the overall property.

All of the operations are done mod q. We first start with a function intt_ntt_kth_term,

which yields INTT(NTT(f))k, and manipulate the definition.

In the majority of this proof we work with a double summation. Recall that we represent

sums of integers mod q in F⋆ as a function that takes a function f: int -> zq, and evaluates

it with inputs between two natural numbers start and stop, summing the results. Our

sum_rewrite_lemma allows us to rewrite a sum using a function f to a function g as long as

we satisfy the predicate

1 forall (i:int). start <= i /\ i < stop ==> f i = g i

To manipulate our sums, we make an auxiliary lemma of the form

1 let aux (f g:int -> zq) (i:int): Lemma (f i = g i)}

Then we can use Classical.forall_intro (aux f g) which introduces forall (i:int).

f i = g i to the proof context, which is picked up by the SMTPat on sum_rewrite_lemma.

intt_ntt_kth_term #n #psi f k = n−1 ·
n−1∑
i=0

(
n−1∑
j=0

fj · ψj·(2i+1)

)
· ψ−k·(2i+1)

= n−1 ·
n−1∑
i=0

n−1∑
j=0

fj · ψj·(2i+1) · ψ−k·(2i+1)

In this first step in our proof, we unfold the definition of intt_ntt_kth_term to expose the

underlying double sum. The first manipulation simply uses the property from equation 4.1,

because the term ψ−k·(2i+1) does not contain j. In F⋆, we define the auxiliary lemma that

allows us to reason about the function inside the sum, by using a fixed i. This auxiliary

lemma easily verifies with an invocation of sum_mul_lemma which is our F⋆ proof of equation

4.1. Then, we use Classical.forall_intro which introduces the auxiliary lemma with a

forall quantifier to our proof context, and allows us to relate the original double sums.

1 val intt_ntt_is_id_kth_term_1_aux
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2 ...

3 -> Lemma

4 (( sum_of_zqs 0 n (fun j -> (poly_index f j) %* (pow_mod_int #q

psi (j * (2 * i + 1))))) %* (pow_mod_int #q psi (-k * (2 * i

+ 1)))

5 == (sum_of_zqs 0 n (fun j -> (poly_index f j) %* (pow_mod_int #q

psi (j * (2 * i + 1))) %* (pow_mod_int #q psi (-k * (2 * i +

1))))))

6 let intt_ntt_is_id_kth_term_1_aux #n #psi f k i =

7 sum_mul_lemma

8 (pow_mod_int #q psi (-k * (2 * i + 1)))

9 0 n

10 (fun j ->

11 (poly_index f j) %* (pow_mod_int #q psi (j * (2 * i + 1))))

12 let intt_ntt_is_id_kth_term_1 #n #psi f k = Classical.forall_intro (

intt_ntt_is_id_kth_term_1_aux #n #psi f k)

Almost all of the steps in proofs involving sums use this approach, and will be omitted in

future explanations for brevity.

= n−1 ·
n−1∑
i=0

n−1∑
j=0

fj · ψ(j−k)·(2i+1)

= n−1 ·
n−1∑
i=0

n−1∑
j=0

fj · ψ(j−k)·2i · ψ(j−k)

These next two steps simply use properties of modular exponentiation, using the new

pow_mod_int lemma lemma_pow_mod_int_add as well as calc (==) for the distributive

property of integer multiplication over addition. You may notice that the code sometimes

omits lemmas such as distributivity_add_left in a calc (==) block, though for lines

of reasoning containing many algebraic manipulations, the prover can struggle without an
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explicit statement of even these basic facts.

= n−1 ·
n−1∑
j=0

n−1∑
i=0

fj · ψ(j−k)·2i · ψ(j−k)

This proceeds easily with the swap_sum_order lemma, without need of an auxiliary lemma

as the lemma already reasons about double summations.

= n−1 ·
n−1∑
j=0

fj · ψ(j−k)

n−1∑
i=0

ψ(j−k)·2i

= n−1 ·
n−1∑
j=0

fj · ψ(j−k)

n−1∑
i=0

(ψ2·(j−k))i

These next two steps use equation 4.1’s lemma as well as lemma_pow_mod_int_mul in a

similar fashion to the previous steps.

= n−1 ·

(
k−1∑
j=0

fj · ψ(j−k)

n−1∑
i=0

(ψ2(j−k))i

+ fk · ψ(k−k)

n−1∑
i=0

(ψ2(k−k))i

+
n−1∑

j=k+1

fj · ψ(j−k)

n−1∑
i=0

(ψ2(j−k))i

)

The next step in the lemma breaks the outer sum into three parts: a sum of j < k, the term

j = k, and a sum of j > k. In F⋆ we do this in two separate manipulations, where we split

into two sums of j ≤ k and j > k using lemma_sum_join, and unfold the first sum simply
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using the definition of sums.

= n−1 ·

(
k−1∑
j=0

fj · ψ(j−k) ·
(
(ψ2(j−k))n − 1

ψ2(j−k) − 1

)
+ fk · n

+
n−1∑

j=k+1

fj · ψ(j−k) ·
(
(ψ2(j−k))n − 1

ψ2(j−k) − 1

))

We notice that the inner sum is a geometric sum, which we can evaluate using our lemma

lemma_geometric_sum. This step again requires us to use an auxiliary lemma, though we

require just one as the geometric sum lemma reasons about the sum as a whole.

In this step we also rewrite the middle term. ψk−k = 1 by lemma_pow_mod_int_pow0.

The term inside the sum, (ψ2(k−k))i = (ψ0)i by simple arithmetic on F⋆ integers, and ψ0 = 1

by lemma_pow_mod_int_pow0. We invoke lemma_pow_mod_int_one to reduce the sum to a

sum of ones, and finally use lemma_sum_ones which equates the sum of ones to stop-start,

in this case n.

= n−1 · fk · n

= fk

In these last steps, we see the two sums collapse to zero. If we examine the geometric

sum term, we have the expression (ψ2(j−k))n − 1 in the numerator. We can rearrange the

exponent to (ψ2n)(j−k), and by the definition of roots of unity ψ2n = 1. The dividend then

becomes 1−1 = 0, and in turn the whole summed expression becomes zero. We finish off the

proof with lemma_sum_zeros to take us to the first line above, and lemma_pow_mod_int_add

brings us to the end of the proof n−1 · n1 = n−1+1 = n0 = 1.

Now that we have proved the identity INTT(NTT(f))k = fk, Classical.forall_intro

allows us to easily prove that the full polynomials INTT(NTT(f)) and f are equal.
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1 val intt_ntt_is_id_kth_term:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> (f:lpoly n)

5 -> (k:nat{k < n})

6 -> Lemma (ensures (f.[k]) == ((intt #n #psi (ntt #n #psi f)).[k]))

7

8 let intt_ntt_is_id #n #psi f =

9 Classical.forall_intro (intt_ntt_is_id_kth_term #n #psi f)

4.4.2 Convolution theorem

The other large lemma that we need to prove for the correctness of the NTT is the convolution

theorem, which relates componentwise multiplication to multiplication in the quotient ring.

NTT(f · g) = NTT(f)⊙ NTT(g)

Again, we find it easiest to reason about one term at a time. In F⋆, we write the

convolution theorem as a sequence equality that relates the ntt, mul_quotient_ring, and

mul_componentwise functions.

1 val convolution_theorem:

2 #n:power_of_two{n < q}

3 -> #psi:primitive_nth_root_of_unity_mod #q (2 * n)

4 -> f:lpoly n

5 -> g:lpoly n

6 -> Lemma

7 (requires True)

8 (ensures equal

9 (ntt #n #psi (mul_quotient_ring f g))
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10 (mul_componentwise (ntt #n #psi f) (ntt #n #psi g)))

NTT(f · g) =
n−1∑
i=0

n−1∑
j=0

ψi(2k+1) · (−1)(i−j)/n · fj · g((i−j) mod n)

=
n−1∑
j=0

n−1∑
i=0

ψi(2k+1) · (−1)(i−j)/n · fj · g((i−j) mod n)

=
n−1∑
j=0

fj ·
n−1∑
i=0

ψi(2k+1) · (−1)(i−j)/n · g((i−j) mod n)

=
n−1∑
j=0

fj ·
n−1∑
i=0

ψi(2k+1) · ψj(2k+1) · ψ−j(2k+1) · (−1)(i−j)/n · g((i−j) mod n)

=
n−1∑
j=0

fj · ψj(2k+1) ·
n−1∑
i=0

ψi(2k+1) · ψ−j(2k+1) · (−1)(i−j)/n · g((i−j) mod n)

=
n−1∑
j=0

fj · ψj(2k+1) ·
n−1∑
i=0

ψ(i−j)(2k+1) · (−1)(i−j)/n · g((i−j) mod n)

Most of the convolution theorem uses very similar techniques to the reversibility lemma.

The steps above use familiar lemmas including lemma_pow_mod_int_add, sum_mul_lemma,

and sum_swap_lemma along with auxiliary lemmas and Classical.forall_intro to manip-

ulate the expression to this point.

Using the fact that ψ is a 2nth root of unity, so ψn = −1, along with the definition of

modulo, we can deduce the following equality.

(−1)(i−j)ψ(i−j)(2k+1) = ψ(i−j mod n)(2k+1)

The proof details can be found in convolution_theorem_kth_term_ok_6_rewrite, but
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involve just simple arithmetic manipulations. Using this fact we continue our proof.

=
n−1∑
j=0

fj · ψj(2k+1) ·
n−1∑
i=0

ψ((i−j) mod n)(2k+1) · g((i−j) mod n)

=
n−1∑
j=0

fj · ψj(2k+1) ·
n−1∑
i′=0

ψi′(2k+1) · gi′

The penultimate step involves reindexing our inner sum, using a new variable i′ = (i − j)

mod n. We use lemma_sum_shift_mod which proves equation 4.10 to reindex.

=

(
n−1∑
j=0

fj · ψj(2k+1)

)
·

(
n−1∑
i′=0

ψi′(2k+1) · gi′
)

= NTT(f)k · NTT(g)k

Finally we use sum_mul_lemma to split the expression from a nested double sum into two

sums, which we realize to be equivalent to expressions for NTT(f)k and NTT(g)k. Since

this is true for any k this completes our proof of the convolution theorem, and thus the

correctness of NTT as well.

4.5 Proving the Cooley-Tukey fast NTT algorithm

Though we have proven that coefficientwise multiplication in the NTT domain yields mul-

tiplication in the quotient ring, our NTT algorithm is still O(n2), making it useful only in

theory. The Cooley-Tukey algorithm allows us to convert from Rq to Tq in O(n log n) time

to reap the benefits of the theorem we have proven.

To do this, we prove that for a polynomial f , NTT(f)k = NTTCT(f)k. Given this

property, we are confident that using the Cooley-Tukey NTT still yields a valid NTT trans-

formation, and the NTT correctness proof still applies.
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Since many of the steps of the Cooley-Tukey proof mimic steps in the NTT reversibility

and convolution theorem proofs, we do not go into as much depth about the arithmetic details

of this proof. However, one major difference in our proof of the Cooley-Tukey algorithm is

that we now care about performance in our code. The expression for the kth term of the

Cooley-Tukey NTT is given by

NTTCT(f)k =



0 k < 0 or k ≥ n

NTTCT(feven)k + ψ2k+1 · NTTCT(fodd)k k < n/2

NTTCT(feven)(k−n/2)

−ψ2(k−n/2)+1 · NTTCT(fodd)(k−n/2) k ≥ n/2

We write this in F⋆ directly, and use the arithmetic outlined in section 3.3 to prove our

desired property. However, constructing a polynomial by using this for every coefficient k is

not efficient. Notice that two coefficients a and b where b = a+n/2 only differ in the sign of

the second term, a property we can take advantage of. We write a new F⋆ function ntt_ct

which calculates the NTT that takes advantage of this property.

1 let rec ntt_ct

2 (#n:power_of_two {2 * n < q})

3 (#psi:primitive_nth_root_of_unity_mod #q (2 * n))

4 (f:lpoly n)

5 : lpoly n

6 =

7 if n = 1 then f

8 else begin

9 power_of_two_div_two n;

10 nth_root_squared_is_primitive_root #q (2 * n) psi;

11 let half_n:power_of_two = n / 2 in

12 assert (half_n * 2 < q);
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13 let odds:lpoly (n/2) = poly_odd f in

14 let evens:lpoly (n/2) = poly_even f in

15 let omega:primitive_nth_root_of_unity_mod #q n

16 = pow_mod #q psi 2 in

17 let odd_ntt:lpoly (n/2) = ntt_ct #( half_n) #omega odds in

18 let even_ntt:lpoly (n/2) = ntt_ct #(n/2) #omega evens in

19 let term_twos:lpoly (n/2) =

20 createi (n/2) (fun k ->

21 pow_mod_int #q psi (2 * k + 1) %* (poly_index #(n/2) odd_ntt

k)) in

22 createi n (fun k ->

23 if k < n / 2 then poly_index #(n/2) even_ntt k +% poly_index

term_twos k

24 else poly_index #(n/2) even_ntt (k - n / 2) -% poly_index

term_twos (k - n / 2)

25 )

26 end

This ntt_ct allows us to take advantage of the fact that the n/2-length NTTs need only be

computed once, and not k times as we would have done by using the coefficient definition,

which is still O(n log n) asymptotically.

Then, we prove a lemma that relates the coefficient definition to the F⋆ implementation.

1 val ntt_ct_lemma

2 (#n:power_of_two {2 * n < q})

3 (#psi:primitive_nth_root_of_unity_mod #q (2 * n))

4 (f:lpoly n)

5 (i:int)

6 : Lemma (poly_index (ntt_ct #n #psi f) i

7 == ntt_ct_kth_term #n #psi f i)
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This gives us everything we need to prove the following string of logic, which allows us

to relate the Cooley-Tukey NTT to the NTT specification we proved correctness for. Note

that some arguments to these functions are omitted for brevity and clarity.

poly_index (ntt_ct f) k = ntt_ct_kth_term f k

= ntt_kth_term f

= poly_index (ntt f) k

The Gentleman-Sande INTT algorithm is similar to the Cooley-Tukey NTT algorithm,

but splits the NTT based on the first and last terms rather than by parity. The proof for

this algorithm is almost complete, though there is one algebraic property remaining to prove

the last part of the algorithm. The proof can be found in Hacl.Spec.NTT.Fast.fst at the

end of the file, commented out.
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Chapter 5

Implementation

The verified NTT and fast NTT are implemented on top of HACL⋆.

5.1 F* implementation code

We implement our representation of polynomials, along with addition and scalar multiplica-

tion in 25 lines of F⋆ code.

The ntt_ct, ntt_gs, and mul_componentwise functions are all that is necessary to

perform polynomial multiplication, and are implemented in 60 lines of F⋆ code.

5.2 Proof code

The majority of the code lies in the proofs. The root of unity proofs consist of 250 lines, the

summation proofs 650 lines, and the pow_mod_int proofs 850 lines of F⋆ code. The F⋆ NTT

proof, including the reversibility and convolution theorems involved 1092 lines of code. The

Cooley-Tukey fast NTT was proven in 726 lines of code.
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5.3 Extracted OCaml

The extracted OCaml mul_componentwise is 14 lines of OCaml code, and the NTT and

INTT code is 100 lines of OCaml code.
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Chapter 6

Evaluation

A major result of this thesis is the correctness of the NTT, which we prove in F⋆. Since this

result is motivated by performance, we measure performance of using this alternate method

of multiplcation.

6.1 Performance metrics

Verified code in F⋆ can be extracted to runnable programs in languages including OCaml

and F#. When we run fstar and pass options to extract to OCaml, for instance, F⋆ verifies

all of the code passed to it and produces OCaml code. F⋆ generates code only for definitions

that correspond to executable code, while lemmas and proof-only code is erased after being

checked. Executable code that exists only for proof purposes, such as the naive ntt, can be

annotated to be omitted in the extracted OCaml code. F⋆ types are converted into OCaml

types, though because F⋆ types are more expressive than OCaml, there is a loss of precision

in many types. Extracting our NTT code to OCaml allows us to have code whose behavior

is verified to match the specification.

There is one last proof that we require before extracting to OCaml, which is a proof of

a root of unity modulo q. In our F⋆ functions and proofs, we simply use a refinement type

to represent the properties of the root of unity, but never specify a concrete integer which
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satisfies those properties. In our case, 62 happens to be a 512-th root of unity of 7681, which

we prove using a proof by reflection.

6.1.1 Proving a concrete primitive root of unity

The general strategy for a proof by reflection is to

1. Write a function that tests a property, returning a boolean. For example, is_odd or

in our case, test_primitive_root_of_unity.

2. Prove that if the test function returns true, then the input does indeed exhibit that

property. In our case

test_primitive_root_of_unity psi = true ⇒ is_primitive_root_of_unity psi

Now, using the function gives us a guarantee that a true output from the function yields

a primitive root of unity. In F⋆, we can use assert_norm which simplifies the form inside

the assertion by running the function, and invoke the lemma proving the fact from step 2.

We construct a function test_primitive_root_of_unity from AND-ing the output

from two functions test_root_of_unity and test_primitive. Then we prove a lemma to

show that our test is valid.

1 let lemma_test_primitive_root_of_unity_ok (#m:prime{m > 2}) (#n:nat{n

> 0}) (root:nat_mod m):

2 Lemma (requires test_primitive_root_of_unity #m #n root)

3 (ensures is_primitive_nth_root_of_unity_mod #m n root)

Finally, we are able to use the test along with the lemma above to prove that 62 is a 512-th

root of unity mod q.

1 let root_of_unity_kyber: primitive_nth_root_of_unity_mod #q 512 =

2 assert_norm (test_primitive_root_of_unity #q #512 62);
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3 lemma_test_primitive_root_of_unity_ok #q #512 62;

4 62

6.2 Timing verified code

Polynomial multiplications using the NTT transformations were considerably faster than

multiplying polynomials naively. We time multiplication using the NTT, which involves two

NTT transformations, a coefficientwise multiplication on this result, and finally an INTT

transformation. We compare this to the naive multiplication in the quotient ring using the

coefficient definition from eq. (3.1). We ran the multiplication 10 · (213−n) times at each

degree 2n, and we report the average runtime.

Figure 6.1: Runtime of multiplying various degree polynomials using the naive definition
against using the NTT. The extracted OCaml code was benchmarked on a 2021 Apple
MacBook Pro with M1 Pro.

The NTT multiplication yields a much faster runtime than the naive algorithm, and a

larger speed up when multiplying higher degreed polynomials. Because our NTT proof re-

quires a 2n-th root of unity, we cannot multiply higher degree polynomials than 256 with our

chosen prime number q. While at small degrees, it is better to use the naive multiplication,
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Table 6.1: Speedup of the O(n log n) NTT multiplication over the naive O(n2) quotient ring
multiplication.

Degree NTT Naive NTT / Naive NTT
rt (s) rt (s) speedup factor

256 3.75 52.99 14.12
128 1.16 7.25 6.27
64 0.38 1.06 2.81
32 0.13 0.14 1.11
16 0.045 0.026 0.57
8 0.015 0.005 0.34
4 0.005 0.001 0.24

we get very large speedup at higher degrees. The comparatively poor performance of the

NTT algorithm for small polynomials suggests that we can further optimize our algorithm

by coarsening our base case.

Multiple componentwise multiplications in the NTT domain also correspond to quotient-

ring multiplications. The ML-KEM/Kyber algorithm performs multiple multiplications be-

fore converting, so we can reap even more performance benefit than this initial benchmarking

suggests. Note that although the Gentlemen-Sande INTT algorithm is not verified, we in-

clude proofs for most of its properties and use an unverified version.
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Chapter 7

Discussion

This chapter discusses some decisions made in verifying the NTT in F⋆.

7.1 Prioritizing F⋆ vs. Low*

Ultimately, the goal in a verified implementation of the NTT is to be able to use the verified

code in production with guarantees about its correctness. An implementation in Low*, the

F⋆ subset that compiles to low level code such as C or Rust, would provide a more direct

application to real world systems. Low* proofs often involve several layers to modularlize

the proof process.

1. A high-level specification in F⋆, working with arbitrary precision integers. In this case,

our ntt function along with structures like sums and roots of unity.

2. Proofs and lemmas about this specification in F⋆. This includes all of the correctness

proofs.

3. A specification in Low*.

4. A proof that the Low* specification behaves in correspondence with the high-level F⋆

specification.
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It is not necessary to follow this order exactly. While proofs are dependent on specifica-

tions, the Low* proof does not necessarily depend on F⋆ proofs. For our proof of the NTT,

we could have written a Low* implementation of the NTT and proved that it matches the

F⋆ NTT before proving the necessary correctness theorems.

We prioritized the proof of correctness for the NTT over the Low* implementation. While

we are not able to run code that is as performant, proving that we can write a function using

buffers that matches one using F⋆ sequences is not as interesting of a result. The memory

safety that Low* provides has similar guarantees to carefully written code in a language like

Rust. As a proof of concept, we have completed a Low* implementation of polynomials using

fixed-length buffers, along with a proof of correctness for addition and scalar-multiplication.
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Chapter 8

Future work

8.1 The Gentleman-Sande INTT algorithm

The first obvious piece of work is to finish the proof of the Gentleman-Sande INTT algorithm.

While the majority of the algebraic proof is complete, there is one unverified property about

the symmetry and periodicity of the modular inverse of a root of unity required for the full

proof.

Completing this proof allows us to perform efficient multiplications on polynomials with

confidence.

8.2 A verified Low* implementation

A Low* implementation and proof provides a major step towards production-ready code

with the ability to extract into C using the KaRaMeL compiler. As discussed in section 7.1,

the proof involves a Low* specification along with a proof that the Low* code matches the

F⋆ code. The proofs of correctness done in pure F⋆ provide guarantees that the Low* code

is correct.

Often times, it is beneficial to introduce another intermediate layer between the high-level

F⋆ specification and the Low* specification. This layer is another F⋆ specification that more
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closely matches the Low* execution order. This allows the engineer to do more of the proof

in F⋆, where it is often easier to reason about and manipulate expressions. For example, this

may be particularly useful for the recursive fast-NTT algorithms. The performant approach

is to repeatedly scan the polynomial, which is difficult to map directly to the recursive

approach that we specified in F⋆.

We have started the Low* implementation, complete with representations of Zq including

constant time addition, subtraction, and multiplication, polynomials of integers mod q, and

addition and scalar multiplication of these polynomials. We also include a verified precom-

putation table, which can be easily modified to accommodate any integer of the form ab,

which we use for values ψx without the need for modular exponentiation. Because of the

property ψ2n = 1 mod q, we can perform any modular exponentiation of ψ very efficiently

using this table.
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Chapter 9

Related work

9.1 Verified implementations of NTT multiplications and

Kyber

Hwang et al provide a verified implementation of NTT multiplications using CryptoLine, a

tool and language for verifying low-level implementations of mathematical constructs [10].

Almeida et al. presented the first formally verified implementation of Kyber, including the

NTT using EasyCrypt and Jasmin [11].

9.2 HACL⋆

HACL⋆ is a verified cryptography library written in F⋆. HACL⋆ primitives are as fast as the

fastest C code in OpenSSL, and 1.1 to 5.7x slower than the fastest hand-vectorized assembly

in SUPERCOP [7]. HACL⋆ has a verified implementation of Frodo-KEM, a post-quantum

lattice-based algorithm that was selected as a round 3 candidate in the NIST Post-Quantum

Cryptography Standardization project, but was not selected for standardization. Frodo-

KEM does not use polynomials or the NTT in its implementation.

While many cryptographic algorithms are implemented and verified in HACL⋆, the NTT
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is not among them. We build our NTT and proofs using the HACL⋆ library.
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Chapter 10

Conclusion

This thesis provides an F⋆ proof of correctness of the NTT to allow fast polynomial multipli-

cation in the quotient ring. This thesis also implements several modular arithmetic concepts,

including sums, roots of unity, and modular inverse, which have many applications in cryp-

tography. We also present the start of the Low* NTT implementation, leaving a well-defined

path towards the full implementation.
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