
6.854 Advanced Algorithms Petar Maymounkov

Problem Set 9 (November 8, 2005)

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1a. Let v1, . . . , vk be an independent set in G. The corresponding independent

set in the product graph consists of the points v1, . . . , vk within each of Gv1 , . . . , Gvk
– a total

of k2 vertices.

Any two vertices (of the corresponding independent set) within a Gv are not connected with

an edge, because they are not in the original graph. Also any pair of vertices where one is

in Gv and the other is in Gw (v 6= w) are also not connected, because there are no edges

between any of the vertices in Gv and Gw, since v and w are not connected in G (as they

are part of the original independent set).

Problem 1b. Let m be the number of subgraphs Gv of the product graph that contain

vertices of the independent set. Call these subgraphs Gv1 , . . . , Gvm . By construction there are

no edges between the vertices of any pair Gvi
and Gvj

and hence v1, . . . , vm is an independent

set in G of size m.

Also, let Gv be the subgraph that has the largest number of vertices of the independent set.

Then by averaging we know that Gv must contain at least s/m vertices of the independent

set. And hence by construction, these vertices form an independent set in G of size s/m.

So, G must have an independent set of size w = max {m, s/m}. We claim that w =
√

s.

Assume not. Then w <
√

s, and hence both m <
√

s and s/m <
√

s, which implies that the

size of the original independent set s < m(s/m) = s – contradiction.

Problem 1c. Begin with a graph G that has a maximal independent set of size OPT.

Create the product graph, in O(n2) time, whose maximal independent set is at least of size

OPT2 (according to part 1a). Find an α-approximation in the product graph, which produces

an independent set in the product graph of size at least OPT2/α in P (n2) = poly(n2) time,

9-1

where P (n) is the runtime of the α-approximation scheme. Project this independent set

down to the original graph (using part 1b), to get an independent set of size OPT/
√

α in

the original graph. Hence we just obtained a
√

α-aproximation algorithm, which runs in

n2 + P (n2) time.

Notice that the new runtime is polynomial and has double the degree of the polynomial

P (n). Hence every recursive application of this procedure doubles the degree of the runtime

polynomial.

Given any desired approximation factor ε. Apply the above procedure r = − log2 logα ε times

to get an ε-approximation. This procedure runs in polynomial time, since r = O(1) and our

runtime is O(n2r deg P (n)).

Problem 2a. This is a non-algorithmic argument:

1. Begin with a Steiner tree in G, with edge cost OPT

2. Double each edge of the Steiner tree to turn the Steiner tree into 1 big cycle, with edge

cost 2OPT

3. On the cycle, replace the path between every pair of adjacent-on-the-cycle terminal

vertices, with the shortest path between them. Get a cycle of cost 5 2OPT

4. Project this cycle to G′, where it preserves its cost, but now it consists only of terminal

vertices

5. Remove some subset of edges from the cycle (in G′) to turn it into a tree (which spans

all terminal vertices of G, and hence all vertices of G′). This further reduces the cost,

and maintains that cost < 2OPT

6. Observe that the MST in G′ is cheaper than that tree, hence the cost of MST in G′ is

no bigger than 2OPT

9-2

Problem 2b.

1. Compute all pairs shortest paths in G using Floyd-Warshall, and create G′. Runtime

O(n3)

2. Compute MST in G′ in O(n2 log n)

3. Project MST in G′ to a subgraph of G that contains all terminal vertices (by construc-

tion) and has cost no bigger than 2OPT

4. Remove cycles from this graph arbitrarily so it can become a tree. Do this using DFS

e.g.

The total runtime of this algorithm is O(n3).

Problem 3a. Set up a dynamic program. Let the problem instance be identified by a

vector x = x1, . . . , xk describing number of items of each type. And set B(x) to be the

optimal number of bins for x. Let also Q be the set of all possible single-bin packings. We

can describe any element y of Q by giving a vector describing the number of items of each

type in the bin, y = y1, . . . , yk, hence |Q| = nk.

For any problem x, the “last bin” is an element of Q. For each possibility for the last bin,

we lookup the best allocation of the remaining items. So, in particular:

B(x) = 1 + min
y∈Q

B(x− y)

We also have B(0) = 0. Finally, we reconstruct the actual solution by tracing back through

the dynamic program. There are a total of nk nodes in the dynamic program, and computing

each requires an enumerate of size nk, so the total runtime is n2k.

Problem 3b. Add the remaining small items one at a time:

1. Scan through the “usable” bins

9-3

2. Eeach time we encounter a bin that has < ε free space, set it aside as “unusable”

3. If we encounter a bin with = ε free space, place the current item in it and stop scanning

4. If we reach the end of the bin list (they must have all been marked as unusable), create

a new bin and place the item there

5. Repeat above procedure for each small item

Obvious amortized analysis shows that this runs in linear time (each bin is processed at most

as many times as the number of small items that go in it plus 1).

If no new bins are created, then the packing uses B bins. Otherwise, assume that we end

with r > B bins. By construction r − 1 of them must have < ε free space each, hence there

is at least (r − 1)(1 − ε) volume of items in them, hence B∗ > (r − 1)(1 − ε). Hence:

r < 1 +
B∗

1 − ε

r < 1 + (1 + 2ε)B∗

Note: The problem set statement may have a typo. Achieving r 5 1 + (1 + ε)B∗ is not

possible in all cases. Consider 1000 items of size 0.5, 1100 items of size 0.2, and 201 items of

size 0.33. Optimum is 787 bins. Set ε = 0.33. And consider a placement of the large items

where each bin has 1 item of size 0.5 and 1 item of size 0.2. Packing the small items could

entail 100 bins with 1 item of 0.2, and 2 items of 0.33, and 1 more bin with 1 item of 0.33.

Total of 1101 bins, which is much bigger than (1 + 0.33) 787.

So we’ve shown that the number of bins we get is max {B, 1 + (1 + 2ε)B∗}.

Problem 3c. Rounding up by to the next power of 1 + ε introduces two problems. Frist,

a an item may become larger than 1 rendering the whole problem infeasible. But even if we

avoid rounding above 1. We can still have a situation where rounding with an arbitrarily

small ε can increase the size of the optimal solution by a fixed constant factor. E.g. consider

a problem with n/2 items of size 1/3 and n/2 items of size 2/3. The optimum here is n.

After rounding with any ε > 0, the optimum becomes = 1.5n.

9-4

Problem 3d. Let the item sizes be a1, . . . , an in decreasing order, and let ã1, . . . , ãn be

the respective increased item sizes after grouping. Take an optimal packing, and replace

each item ai in the packing by ãi+k; also, throw away the smallest k items from the original

packing (since we are not replacing them with anything). The result is a packing for all but

the largest k items, using the items’ increased sizes. This new packing still has B∗ bins,

and it is feasible because each original item is replaced by no bigger item (because of the

definition of the grouping procedure). If we now accommodate each of the largest k items

(with increased sizes) in a separate new bin each, we get a packing for all of the increased-size

items with B∗ + n/k bins. By this we’ve shown that an optimum solution of the grouping

problem is at most n/k bins larger than the optimum solution to the original problem.

Problem 3e.

1. Take all items > ε/2, the large items, nLARGE in count

2. Note that for the optimum of the large items, OPTLARGE, we have n = OPTLARGE =

nLARGEε/2 and OPTLARGE 5 OPT

3. Set k = 2/ε2 = O(1)

4. Group large items and round up (as described in part 3d)

5. Solve optimally, using part 3a

6. Get a solution for large items wLARGE, where:

wLARGE 5 OPTLARGE + nLARGEε2/2

5 (1 + ε)OPTLARGE

5 (1 + ε)OPT

7. Add small items into packing of large items using part 3b

9-5

8. Get a packing of all items with w bins. We have that:

w = max {wLARGE, 1 + (1 + ε)OPT}

5 max {(1 + ε)OPT, 1 + (1 + ε)OPT}

= 1 + (1 + ε)OPT

Total runtime is dominated by the time to solve for the grouped large items optimally, i.e.

O(n2k) = O(n4/ε2).

Problem 4a. Maximum completion time is T =
∑

pj = poly(n). The ILP is:

min
∑

j

wj

T∑
t=1

txjt (9.1)

xjt = 0 or xjt = 1 (9.2)

T∑
t=1

xjt = 1, for all j (9.3)

t0∑
t=1

xit =
t0∑

t=1

xjt, for every “i must precede j”, and every t0 (9.4)

t0∑
t=1

∑
j

xjtpj 5 t0, for all 1 5 t0 5 T (9.5)

Problem 4b. Define hj to be the smallest integer number such that:∑
t5hj

xtj =
∑
t>hj

xtj

9-6

Then we have:
c̄j =

∑
t

txjt

=
∑

t5hj−1

txjt +
∑

t>hj−1

txjt

=
∑

t5hj−1

txjt + hj

∑
t>hj−1

xjt

= hj

∑
t>hj−1

xjt

= hj/2

Problem 4c. Let “i must precede j”, and assume on the contrary that hi > hj. That

implies that
∑

t5hj
xjt >

∑
t5hj

xit, which violates constraint 9.4.

Problem 4d. WLOG, h1 5 · · · 5 hn. By 9.5 (with t0 = hj) we have that:

hj =
hj∑
t=1

∑
i5j

xitpi

=
∑
i5j

hi∑
t=1

xitpi

=
∑
i5j

pi

2
, by definition of hi

Therefore 2hj = p1+· · ·+pj = cj. From part 4b we know that 4c̄j = 2hj, and hence conclude

that 4c̄j = cj.

Problem 4e.

1. Solve LP relaxation (where 0 5 xjt 5 1)

2. Get relaxed optimum w =
∑

j wj ĉj

3. Compute hj’s

9-7

4. Order job’s according to hj’s (as in part 4c)

5. Resulting schedule is feasible according to part 4c

6. Resulting schedule cost is
∑

j wjcj 5 4
∑

j wj c̄j (according to part 4d), i.e. within a

factor 4 of optimum

7. Hence we get a 4-approximation

9-8

