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Problem 1.2.

Part (a): Let u1, . . . , un and v1, . . . , vn be the eigenvalues of A and B respectively. Since

A−B is positive semi-definite, we have x∗Ax ≥ x∗Bx for all x.

Begin by generalizing the Courant-Fischer theorem. Let A = UΛU∗ where U is an orthonor-

mal basis, and let U∗x = z (and thus x = Uz), also label A’s eigenvalues as λ1 ≤ · · · ≤ λn.

For an arbitrary choice of vectors w1, . . . , wk−1 we have:

min
x∗x=1

x⊥w1,...,wk−1

x∗Ax = min
x∗x=1

Uz⊥w1,...,wk−1

∑
λiz

2
i

= min
z∗z=1

z⊥U∗w1,...,U∗wk−1

∑
λiz

2
i

≤ min
z∗z=1

zk+1=···=zn=0
z⊥U∗w1,...,U∗wk−1

∑
λiz

2
i (†)

= min
z2
1+···+z2

k=1
zk+1=···=zn=0

z⊥U∗w1,...,U∗wk−1

∑
λiz

2
i

≤ λk

Note that in order to justify inequality (†) we need to make sure that the minimization is not

over the empty set. Since z⊥U∗w1, . . . , U
∗wk−1 is an underspecified linear system with at

most k−1 independent constraints, we can add up to n−k+1 consistent constraints (in this

case zk+1 = · · · = zn = 0) while ensuring that the system still has a solution. Furthermore,

the use of “min” (instead of “inf”) is justified since x∗x = 1 is compact. Combining this

with the Ritz-Rayleigh equality:

λk = min
x∗x=1

x⊥u1,...,uk−1

x∗Ax

Gives the desired equality:

λk = max
w1,...,wk−1

min
x∗x=1

x1⊥w1,...,wk−1

x∗Ax
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We now use the latter to show λk ≥ µk for all k:

λk = max
w1,...,wk−1

min
x∗x=1

x1⊥w1,...,wk−1

x∗Ax

≥ max
w1,...,wk−1

min
x∗x=1

x1⊥w1,...,wk−1

x∗Bx

= µk

Part (b): Using f ∗Lf =
∑

x∼y

(
f(x)− f(y)

)2
:

f ∗LPnf =
n−1∑
i=1

(
f(xi)− f(xi+1)

)2
≥ 1

n− 1
·
(
f(n)− f(1)

)2
using (x1 − xn)2 ≤ (n− 1)

∑
(xi − xi+1)

2

=
f ∗L1,nf

n− 1

Hence (n− 1) · f ∗LPnf − f ∗L1,nf ≥ 0 and (n− 1)LPn � L1,n.

Short discussion: Applying the Laplacian of a graph G to a function f essentially disperses

the (appropriately defined) volume of f across G’s vertices, using local corrections only.

Applying the negative Laplacian of (a possibly different) graph H counteracts this dispersion

using local corrections w.r.t. H. Note that f ∗Lf is a measure of how much functional

volume has been moved in one step. To say that f ∗LGf � f ∗LHf is to say that G is faster

at dispersing f than H is at counteracting.

Part (c): For simplicity if notation we let Lj−i denote the Laplacian of the path graph

between i and j on n vertices, whose edges are (i, i+ 1), . . . , (j − 1, j). Then:

LKn =
∑
j>i

Lj,i

�
∑
i<j

(j − i)Lj−i using Part (b)

� (n− 1)
∑
i<j

Lj−i

� (n− 1)
∑
i<j

Ln−1 using LH � LG when H ⊆ G

= O(n3)LPn

The eigenvalue bound now follows from Part (a) and λ2(Kn) = n.
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Part (d): Let [n] be the vertex set of the tree under consideration Tn. Set Lj−i to denote

the shortest path between i and j along the tree edges. Such a path is no longer than 2 log n.

LKn =
∑
j>i

Lj,i

� 2 log n
∑
j>i

Lj−i

� 2 log n
∑

e∈E(Tn)

O(n2)Le since each Tn-edge is used at most

(
n

2

)
times

= O(n2 log n)LTn

The eigenvalue bound now follows from Part (a) and λ2(Kn) = n.

Problem 1.3.

We begin with a slightly different proof of the inequality λ2(G) ≤ O
(
Φ(G)

)
, which illuminates

how λ2(G) can depart from Φ(G). Let LG(S) denote the Laplacian of the induced subgraph

of G on the vertex subset S ⊆ V . Let LK(S) denote the Laplacian of the complete graph on

the vertex subset S ⊆ V . Also if H ⊆ V ×V is an edge set, then let LH denote its Laplacian.

Set T = V \S. For any cut S we have:

LG = LG(S) + L∂S + LG(T )

� LK(S) + L∂S + LK(T ) using LH � LG when H ⊆ G (†)
= LK(S) ⊕ LK(T ) + L∂S since S ∩ T = ∅
= LH here H = K(S) ∪ ∂S ∪K(T )

Using Part (a) of Problem 1.2 we know that λ2(LG) ≤ λ2(LH). Define

g(x) =

{
|T |
|T |−|S| , if x ∈ S
|S|

|T |−|S| , if x ∈ T
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And note that g⊥1. Then:

λ2(LH) = min
f⊥1

∑
{x,y}∈E(H)

(
f(x)− f(y)

)2∑
x∈V (H) f(x)2

≤
∑
{x,y}∈E(H)

(
g(x)− g(y)

)2∑
x∈V (H) g(x)2

(‡)

=
O(n) · |∂S|
|S| · |T |

= O

(
|∂S|

min
(
|S|, |T |

))
= O

(
Φ(G)

)
Note what we have done: We fixed a sparse cut in the graph, then we “densified” (†) both

sides of the cut and than we approximated the second eigenvector (‡) of the denser graph.

For the path graph, the densification step considerably departs from Pn’s eigenvalue hence

the gap between λ(Pn) and Φ(Pn). For the tree graph, it would seem that the densification

step changes the eigenvalue, but in fact it does not w.r.t. the approximate eigenfunction

used in (‡), hence the tight inequality.

The inequality O(Φ(G)2) ≤ λ(G) can be rephrased in a similar fashion. Here we fix an

eigenfunction f and then break up long edges into short ones w.r.t. f . Then we substitute f

with a slightly less-conducted function g whose eigenvalue can be related to the sparsest cut

(in the fixed order). The subtlety in this latter step is that g is analyzed as if all (ordered)

cuts on g are as small as the smallest one!

Note that the sinusoidal shape of Pn’s eigenvectors induces about n/2 long edges, each of

which is cut into 2 short ones. This has little impact on conductance. More importantly

though, all cuts along the eigenvector cut the same number of edges, which is 2. Thus the

Cheeger inequality is tight up to a constant.

For the tree, we can see that there are about n/ log n long edges, each cut into (on average)

log n short ones. This is does not have significant impact on the eigenvalue. However, the

majority of the cuts along the eigenvector cut O(n log n) short edges, while the smallest cut

cuts only 1 edge. Therefore, the analysis grossly underestimates the Cheeger constant, while

still managing to find it algorithmically.

It is quite intuitive now that Pn × Tn can give a good intermediate case. Why? We have

λ(Pn × Tn) = O(1/n) and Φ(Pn × Tn) = O(1/n). The first inequality is tight for the same

reason it is tight for the tree. (Note that there are at least two natural optimal cuts, for both

of which this argument works. One natural cut is to cut all trees at the center. The other
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is to cut all paths at the center.) Let’s consider what the grid eigenvector does. Restricting

the eigenvector to any path or tree produces the correct ordering. However, it is not hard

to see that all trees are displaced in the global order) with respect to each other such that

every tree-wise cut is badly dense. Likewise, all paths are displaced from each other by the

tree eigenvector, so that every cut corresponds to a zig-zag cut through the paths.
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