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Problem Set 2 — Solutions

Problem 1

a Assume ,h and g are linear COIlSiStth7 then there is some linear -) such
that:

where ay + a, = ay, therefore:

f(@) +9(y) = é(z) +ay + d(y) + a4



For g, define a, = h(0) — f(0), then:

~

(b) We know that d(f,xs) = (1 — f(5))/2, we also know that d(f, —xs) = 1 —
d(f, xs), therefore d(f, —xs) = (1+ f(S))/2. Hence, we can compute:

mind(f, £xs) = min {mind(f, xs) mind(f, ~xs) }
= min {% (1 - msaxf(S)) % (1 +m§11f(5))}
— 5 (1= max|f(s)])

And therefore (we will need this later):

méind(f, +xs) < 6<:>msax|f(5)| >1-20

(c) Begin by observing that:

1 — f(z)g(y)h(zy)
2

I[f(z)g(y) # hzy)] =

2-2



Furthermore, (following the lecture notes):

SLCNE) SENID SN y]

E., [f(x)g(y)h(zy)] = E,,

=" HS)UTIMU)E,, [xs(z )m(y)xU(xy)]
= 3 A(9)3($)(S)

Notice:

Pr,,[f(@)g(y) # h(ey)] = Proy [1[f(@)g(y) # h(zy)] =1]

= B, [1[f(x)ay) # h(ry)]]

5, [ L/l

Therefore Pr,,[f(2)g(y) # h(azy)] < ¢ amounts to:
Z f(s )>1-26

On the other hand, we derive that:
max (9] = max ()| (Z 1§(T ) (Z h (T)|2> by Parseval
T
2
> max 1F(9))? (Z 1G(T)]| - |h(T |> by Cauchy-Schwarz
2
= | max|f(s |Z|9 )| - (T |>
2
> \f(S)g(S)iz(S)!)
S
2
> f(Sm(S)f%(S))
S

v

v
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Taking the square root gives us:
A > f(9)a(S)h(S) > 1 —
max| f(5)| %:f(s)g(s)h(b’) >1-26

Which further implies that:

The proof for g and h is identical.
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Problem 2

Let f: {£1}" — {£1} be monotone, and for x € {£1}", let 2™ € {£1}" be = with
the i-th entry set to +1, and define = accordingly. Then we have that:

(f(a) = flz))
(f@)xgy () + fla7)xqop(@7))

I[f(z") # f(a7)] =

N~ N~

Apply this in the following:

Inf;(f) = Pr,[f(z) # f(z - w)]

- 3 1) £ fa)]
ze{0,1}™

=0 2 SUE @) + X))
ze€{0,1}"

— 5 Y @)
z€{0,1}m

= f{ip
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Problem 3

For any monotone function we have:

inf(f) = > infi(f)

1€[n]

= Z f({i}) since f monotone

i€[n]

DI IO DR

1€[n] ze{£1}"

YD ) e

ze{£1}" i€[n]

Maximizing over all (not just monotone) functions:

mjz}xinf( rnax— Z Zf

ze{£1}" i€[n]

:Qi Z maXZf

ze{£1}" i€[n]

The last quantity, when n is odd, is clearly maximized only when:

flz) =maj {z1,...,2,}
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Problem 4

Let the graph be random d-regular on the left (with each edge connected uniformly
at random on the right). Then let X be a random variable equal to the number of
subsets of the left vertices that shrink, i.e. whose neighbor sets on the right are equal
or smaller in size. For a fixed left set of size k& we have that the probability, p(k),

that it shrinks is bounded by (using a union bound over all right subsets of size k):

2n/3 ko™
< v
0= (%) (zm)
Hence, for E[X] we have:

£ 07 ()
< 2 (623 (%)CH) using <Z> < (%)k
DGO

When d > In(3e?)/In(4/3) + 2, we have that €3 (%)d_2 < 1/2, and therefore:

DN | o

E[X] <) (1/2)F <1

00
k=1

Therefore, there exists a graph of left degree d = [In(3e?)/1n(4/3) + 3] for which no
left subset of size up to n/2 shrinks on the right.



