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Problem Set 2 – Solutions

Problem 1

(a) Assume f, h and g are linear consistent, then there is some linear φ(·) such

that:

f(x) = φ(x) + af

g(y) = φ(y) + ag

h(x + y) = φ(x + y) + ah

where af + ag = ah, therefore:

f(x) + g(y) = φ(x) + af + φ(y) + ag

= φ(x + y) + ah

= h(x + y)

In the other direction, define φ(x) = h(x)− h(0). Check that φ(·) is linear:

φ(x) + φ(y) = h(y)− h(0) + h(y)− h(0)

= f(x) + g(0)− h(0) + f(0) + g(y)− h(0)

=
(
f(x) + g(y)

)
+
(
f(0) + g(0)

)
− 2h(0)

= h(x + y) + h(0)− 2h(0)

= h(x + y)− h(0)

= φ(x + y)

For f , define af = h(0)− g(0), then:

f(x) = h(x)− g(0) = h(x)− h(0) + af = φ(x) + af
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For g, define ag = h(0)− f(0), then:

g(x) = h(x)− f(0) = h(x)− h(0) + ag = φ(x) + ag

For h, define ah = h(0), then:

h(x) = h(x)− h(0) + h(0) = h(x)− h(0) + ah = φ(x) + ah

Finally, verify that:

af + ag = h(0)− g(0) + h(0)− f(0)

= 2h(0)−
(
f(0) + g(0)

)
= h(0)

= ah

(b) We know that d(f, χS) = (1 − f̂(S))/2, we also know that d(f,−χS) = 1 −
d(f, χS), therefore d(f,−χS) = (1 + f̂(S))/2. Hence, we can compute:

min
S

d(f,±χS) = min
{

min
S

d(f, χS), min
S

d(f,−χS)
}

= min

{
1

2

(
1−max

S
f̂(S)

)
,
1

2

(
1 + min

S
f̂(S)

)}
=

1

2

(
1−max

S
|f̂(S)|

)
And therefore (we will need this later):

min
S

d(f,±χS) ≤ δ ⇔ max
S

|f̂(S)| ≥ 1− 2δ

(c) Begin by observing that:

I
[
f(x)g(y) 6= h(xy)

]
=

1− f(x)g(y)h(xy)

2
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Furthermore, (following the lecture notes):

Ex,y [f(x)g(y)h(xy)] = Ex,y

[∑
S

f̂(S)χS(x)
∑

T

ĝ(T )χT (y)
∑

U

ĥ(U)χU(xy)

]
=
∑
S,T,U

f̂(S)ĝ(T )ĥ(U)Ex,y

[
χS(x)χT (y)χU(xy)

]
=
∑

S

f̂(S)ĝ(S)ĥ(S)

Notice:

Prx,y

[
f(x)g(y) 6= h(xy)

]
= Prx,y

[
I
[
f(x)g(y) 6= h(xy)

]
= 1
]

= Ex,y

[
I
[
f(x)g(y) 6= h(xy)

]]
= Ex,y

[
1− f(x)g(y)h(xy)

2

]

Therefore Prx,y

[
f(x)g(y) 6= h(xy)

]
≤ δ amounts to:∑

S

f̂(S)ĝ(S)ĥ(S) ≥ 1− 2δ

On the other hand, we derive that:

max
S

|f̂(S)|2 = max
S

|f̂(S)|2
(∑

T

|ĝ(T )|2
)(∑

T

|ĥ(T )|2
)

by Parseval

≥ max
S

|f̂(S)|2
(∑

T

|ĝ(T )| · |ĥ(T )|

)2

by Cauchy-Schwarz

=

(
max

S
|f̂(S)|

∑
T

|ĝ(T )| · |ĥ(T )|

)2

≥

(∑
S

∣∣f̂(S)ĝ(S)ĥ(S)
∣∣)2

≥

(∑
S

f̂(S)ĝ(S)ĥ(S)

)2
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Taking the square root gives us:

max
S

|f̂(S)| ≥
∑

S

f̂(S)ĝ(S)ĥ(S) ≥ 1− 2δ

Which further implies that:

min
S

d(f,±χS) ≤ δ

The proof for g and h is identical.
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Problem 2

Let f : {±1}n → {±1} be monotone, and for x ∈ {±1}n, let x+ ∈ {±1}n be x with

the i-th entry set to +1, and define x− accordingly. Then we have that:

I[f(x+) 6= f(x−)] =
1

2

(
f(x+)− f(x−)

)
=

1

2

(
f(x+)χ{i}(x

+) + f(x−)χ{0}(x
−))

Apply this in the following:

Infi(f) = Prx[f(x) 6= f(x · ui)]

=
1

2n

∑
x∈{0,1}n

I[f(x+) 6= f(x−)]

=
1

2n

∑
x∈{0,1}n

1

2

(
f(x+)χ{i}(x

+) + f(x−)χ{0}(x
−))

=
1

2n

∑
x∈{0,1}n

f(x)χ{i}(x)

= f̂({i})
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Problem 3

For any monotone function we have:

inf(f) =
∑
i∈[n]

infi(f)

=
∑
i∈[n]

f̂({i}) since f monotone

=
∑
i∈[n]

1

2n

∑
x∈{±1}n

f(x) · xi

=
1

2n

∑
x∈{±1}n

∑
i∈[n]

f(x) · xi

Maximizing over all (not just monotone) functions:

max
f

inf(f) = max
f

1

2n

∑
x∈{±1}n

∑
i∈[n]

f(x) · xi

=
1

2n

∑
x∈{±1}n

max
f(x)

∑
i∈[n]

f(x) · xi

The last quantity, when n is odd, is clearly maximized only when:

f(x) = maj {x1, . . . , xn}
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Problem 4

Let the graph be random d-regular on the left (with each edge connected uniformly

at random on the right). Then let X be a random variable equal to the number of

subsets of the left vertices that shrink, i.e. whose neighbor sets on the right are equal

or smaller in size. For a fixed left set of size k we have that the probability, p(k),

that it shrinks is bounded by (using a union bound over all right subsets of size k):

p(k) ≤
(

2n/3

k

)(
k

2n/3

)kd

Hence, for E[X] we have:

E[X] ≤
n/2∑
k=1

(
n

k

)(
2n/3

k

)(
k

2n/3

)kd

≤
n/2∑
k=1

(
e2 3

2

(
3k

2n

)d−2
)k

using

(
n

k

)
≤
(ne

k

)k

<
∞∑

k=1

(
e2 3

2

(
3

4

)d−2
)k

When d > ln(3e2)/ ln(4/3) + 2, we have that e2 3
2

(
3
4

)d−2
< 1/2, and therefore:

E[X] <
∞∑

k=1

(1/2)k < 1

Therefore, there exists a graph of left degree d = dln(3e2)/ ln(4/3) + 3e for which no

left subset of size up to n/2 shrinks on the right.
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