
Chapter 1.
Sums of Independent Random Variables

In one way or another, most probabilistic analysis entails the study of large
families of random variables. The key to such analysis is an understanding of
the relations among the family members; and of all the possible ways in which
members of a family can be related, by far the simplest is when the relationship
does not exist at all! For this reason, we will begin by looking at families of
independent random variables.

§1.1 Independence
In this section we will introduce Kolmogorov’s way of describing independence

and prove a few of its consequences.
§1.1.1. Independent Sigma Algebras. Let (Ω,F ,P) be a probability
space (i.e., Ω is a nonempty set, F is a σ-algebra over Ω, and P is a mea-
sure on the measurable space (Ω,F) having total mass 1); and, for each i from
the (nonempty) index set I, let Fi be a sub σ-algebra of F . We say that
the σ-algebras Fi, i ∈ I, are mutually P-independent or, less precisely, P-
independent, if, for every finite subset {i1, . . . , in} of distinct elements of I
and every choice of Aim ∈ Fim , 1 ≤ m ≤ n,

(1.1.1) P
(
Ai1 ∩ · · · ∩Ain

)
= P

(
Ai1
)
· · ·P

(
Ain
)
.

In particular, if {Ai : i ∈ I} is a family of sets from F , we say that Ai, i ∈
I, are P-independent if the associated σ-algebras Fi = {∅, Ai, Ai{,Ω}, i ∈ I,
are. To gain an appreciation for the intuition on which this definition is based,
it is important to notice that independence of the pair A1 and A2 in the present
sense is equivalent to

P
(
A1 ∩A2

)
= P

(
A1

)
P
(
A2

)
,

the classical definition which one encounters in elementary treatments. Thus, the
notion of independence just introduced is no more than a simple generalization
of the classical notion of independent pairs of sets encountered in non-measure
theoretic presentations; and therefore, the intuition which underlies the elemen-
tary notion applies equally well to the definition given here. (See Exercise 1.1.8
below for more information about the connection between the present definition
and the classical one.)
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2 1Sums of Independent Random Variables

As will become increasing evident as we proceed, infinite families of indepen-
dent objects possess surprising and beautiful properties. In particular, mutually
independent σ-algebras tend to fill up space in a sense which is made precise by
the following beautiful thought experiment designed by A.N. Kolmogorov. Let
I be any index set, take F∅ = {∅,Ω}, and for each nonempty subset Λ ⊆ I, let

FΛ =
∨
i∈Λ

Fi

be the σ-algebra generated by
⋃
i∈Λ Fi (i.e., the smallest σ-algebra containing

all of the Fi’s). Next, define the tail σ-algebra T to be the intersection over
all finite Λ ⊆ I of the σ-algebras FΛ{. When I itself is finite, T = {∅,Ω} and
is therefore P-trivial in the sense that P(A) ∈ {0, 1} for every A ∈ T . The
interesting remark made by Kolmogorov is that even when I is infinite, T is
P-trivial whenever the original Fi’s are P-independent. To see this, first note
that, by assumption, FF1 is P-independent of FF2 whenever F1 and F2 are finite,
disjoint subsets of I. Since for any (finite or not) Λ ⊆ I, FΛ is generated by the
algebra ⋃{

FF : F is a finite subset of Λ
}
,

it follows (cf. Exercise 1.1.8) first that FΛ is P-independent of FΛ{ for every
Λ ⊆ I and then that T is P-independent of FI . But T ⊆ FI , which means
that T is independent of itself ; that is, P(A ∩B) = P(A)P(B) for all A, B ∈ T .
Hence, for every A ∈ T , P(A) = P(A)2, or, equivalently, P(A) ∈ {0, 1}; and so
we have now proved the following famous result.

Theorem 1.1.2 (Kolmogorov’s 0–1 Law). Let {Fi : i ∈ I} be a family
of P-independent sub-σ-algebras of (Ω,F ,P), and define the tail σ-algebra T as
above. Then, for every A ∈ T , P(A) is either 0 or 1.

To get a feeling for the kind of conclusions which can be drawn from Kol-
mogorov’s 0–1 Law (cf. Exercises 1.1.16 and 1.1.17 below as well), let {An}∞1 be
a sequence of subsets of Ω, and recall the notation

lim
n→∞

An ≡
∞⋂
m=1

⋃
n≥m

An

=
{
ω : ω ∈ An for infinitely many n ∈ Z+

}
.

Obviously, limn→∞An is measurable with respect to the tail field determined by
the sequence of σ-algebras {∅, An, An{,Ω}, n ∈ Z+; and therefore, if the An’s
are P-independent elements of F , then

P
(

lim
n→∞

An

)
∈ {0, 1}.
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In words, this conclusion can be summarized as the statement that: for any
sequence of P-independent events An, n ∈ Z+, either P-almost every ω ∈ Ω is in
infinitely many An’s or P-almost every ω ∈ Ω is in at most finitely many An’s.
A more quantitative statement of this same fact is contained in the second part
of the following useful result.

Lemma 1.1.3 (Borel–Cantelli Lemma). Let {An : n ∈ Z+} ⊆ F be given.
Then

(1.1.4)
∞∑
n=1

P(An) <∞ =⇒ P
(

lim
n→∞

An

)
= 0.

Conversely, if the An’s are P-independent sets, then

(1.1.5)
∞∑
n=1

P(An) =∞ =⇒ P
(

lim
n→∞

An

)
= 1.

(See part (iii) of Exercise (5.2.34?) and Lemma for variations on this theme.)

Proof: The first assertion is an easy application of countable additivity. Name-
ly, by countable additivity,

P
(

lim
n→∞

An

)
= lim
m→∞

P
( ⋃
n≥m

An

)
≤ lim
m→∞

∑
n≥m

P(An) = 0

if
∑∞
n=1 P(An) <∞.

To prove (1.1.5), note that, by countable additivity, P
(
limn→∞An

)
= 1 if

and only if

lim
m→∞

P
( ⋂
n≥m

An{

)
= P

 ∞⋃
m=1

⋂
n≥m

An{

 = P
((

lim
n→∞

An

)
{

)
= 0.

But, again by countable additivity and independence, for given m ≥ 1 we have
that:

P

( ∞⋂
n=m

An{

)
= lim
N→∞

N∏
n=m

(
1− P(An)

)
≤ lim
N→∞

exp

[
−

N∑
n=m

P
(
An
)]

= 0

if
∑∞
n=1 P(An) = ∞. (In the preceding, we have used the trivial inequality

1− t ≤ e−t, t ∈ [0,∞).) �

Another, and perhaps more dramatic, statement of the conclusion drawn in
the second part of the preceding is the following. Let N(ω) ∈ Z+ ∪ {∞} be the
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number of n ∈ Z+ such that ω ∈ An. If the An’s are independent, then Tonelli’s
Theorem implies that (1.1.5) is equivalent to∗

P(N <∞) > 0 =⇒ EP[N] <∞.

§1.1.2. Independent Functions. Having described what it means for the σ-
algebras to be P-independent, we can now transfer the notion to random variables
on (Ω,F ,P). Namely, for each i ∈ I, let Xi be a random variable (i.e., a
measurable function on (Ω,F)) with values in the measurable space (Ei,Bi). We
will say that the random variables Xi, i ∈ I, are (mutually) P-independent
if the σ-algebras

σ(Xi) = X−1
i

(
Bi
)
≡
{
X−1
i (Bi) : Bi ∈ Bi

}
, i ∈ I,

are P-independent. Using

B(E; R) = B
(
(E,B); R

)
to denote the space of bounded measurable R-valued functions on the measurable
space (E,B), notice that P-independence of {Xi : i ∈ I} is equivalent to the
statement that

EP[fi1 ◦Xi1 · · · fin ◦Xin

]
= EP[fi1 ◦Xi1

]
· · ·EP[fin ◦Xin

]
for all finite subsets {i1, . . . , in} of distinct elements of I and all choices of
fi1 ∈ B

(
Ei1 ; R

)
, . . . , and fin ∈ B

(
Ein ; R

)
. Finally, if we use 1A given by

1A(ω) ≡
{

1 if ω ∈ A
0 if ω /∈ A

to denote the indicator function of the set A ⊆ Ω, notice that the family of
sets {Ai : i ∈ I} ⊆ F is P-independent if and only if the random variables
1Ai , i ∈ I, are P-independent.

Thus far we have discussed only the abstract notion of independence and have
yet to show that the concept is not vacuous. In the modern literature, the
standard way to construct lots of independent quantities is to take products of
probability spaces. Namely, if

(
Ei,Bi, µi

)
is a probability space for each i ∈ I,

one sets Ω =
∏
i∈I Ei, defines πi : Ω −→ Ei to be the natural projection map

for each i ∈ I, takes Fi = π−1
i (Bi), i ∈ I, and F =

∨
i∈I Fi, and shows that

there is a unique probability measure P on (Ω,F) with the properties that

P
(
π−1
i Γi

)
= µi

(
Γi) for all i ∈ I and Γi ∈ Bi

∗ Throughout this book, we use EP[X, A] to denote the expected value under P of X over the

set A. That is, EP[X, A] =
∫

A
X dP. Finally, when A = Ω we will write EP[X].
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and the σ-algebras Fi, i ∈ I, are P-independent. Although this procedure is
extremely powerful, it is rather mechanical. For this reason, we have chosen
to defer the details of the product construction to Exercise 1.1.12 below and
to, instead, spend the rest of this section developing a more hands-on approach
to constructing independent sequences of real-valued random variables. Indeed,
although the product method is more ubiquitous and has become the construc-
tion of choice, the one which we are about to present has the advantage that it
shows independent random variables can arise “naturally” and even in a familiar
context.
§1.1.3. The Rademacher Functions. Until further notice, we take (Ω,F) =(
[0, 1),B[0,1)

)
(when E is a metric space, we use BE to denote the Borel field over

E) and P to be the restriction λ[0,1) of Lebesgue’s measure λR to [0, 1). We next
define the Rademacher functions Rn, n ∈ Z+, on Ω as follows. Define the
integer part [t] of t ∈ R to be the largest integer dominated by t and consider
the function R : R −→ {−1, 1} given by

R(t) =
{ −1 if t− [t] ∈

[
0, 1

2

)
1 if t− [t] ∈

[
1
2 , 1
) .

The function Rn is then defined on [0, 1) by

Rn(ω) = R
(
2n−1ω

)
, n ∈ Z+ and ω ∈ [0, 1).

We will now show that the Rademacher functions are P-independent. To this
end, first note that every real-valued function f on {−1, 1} is of the form α +
βx, x ∈ {−1, 1}, for some pair of real numbers α and β. Thus, all that we have
to show is that

EP[(α1 + β1R1) · · · (αn + βnRn)
]

= α1 · · ·αn

for any n ∈ Z+ and (α1, β1), . . . , (αn, βn) ∈ R2. Since this is obvious when
n = 1, we will assume that it holds for n and will deduce that it must also hold
for n+ 1; and clearly this comes down to checking that

EP[F (R1, . . . , Rn)Rn+1

]
= 0

for any F : {−1, 1}n −→ R. But (R1, . . . , Rn) is constant on each interval

Im,n ≡
[
m

2n
,
m+ 1

2n

)
, 0 ≤ m < 2n

whereas Rn+1 integrates to 0 on each Im,n. Hence, by writing the integral over
Ω as the sum of integrals over the Im,n’s, we get the desired result.
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At this point we have produced a countably infinite sequence of independent
Bernoulli random variables (i.e., two-valued random variables whose range
is usually either {−1, 1} or {0, 1}) with mean-value 0. In order to get more
general random variables, we combine our Bernoulli random variables together
in a clever way.

Recall that a random variable U is said to be uniformly distributed on the
finite interval [a, b] if

P(U ≤ t) =
t− a
b− a

for t ∈ [a, b].

Lemma 1.1.6. Let {Y` : ` ∈ Z+} be a sequence of P-independent {0, 1}-
valued Bernoulli random variables with mean-value 1

2 on some probability space
(Ω,F ,P), and set

U =
∞∑
`=1

X`

2`
.

Then U is uniformly distributed on [0, 1].

Proof: Because the assertion only involves properties of distributions, it will
be proved in general as soon as we prove it for a particular realization of inde-
pendent, mean-value 1

2 , {0, 1}-valued Bernoulli random variables. In particular,
by the preceding discussion, we need only consider the random variables

εn(ω) ≡ 1 +Rn(ω)
2

, n ∈ Z+ and ω ∈ [0, 1),

on
(
[0, 1),B[0,1), λ[0,1)

)
. But, as is easily checked, for each ω ∈ [0, 1], ω =∑∞

n=1 2−nεn(ω). Hence, the desired conclusion is trivial in this case. �
Now let (k, `) ∈ Z+ × Z+ 7−→ n(k, `) ∈ Z+ be any one-to-one mapping of

Z+ × Z+ onto Z+, and set

Yk,` =
1 +Rn(k,`)

2
, (k, `) ∈

(
Z+
)2
.

Clearly, each Yk,` is a {0, 1}-valued Bernoulli random variable with mean-value
1
2 , and the family

{
Yk,` : (k, `) ∈

(
Z+
)2} is P-independent. Hence, by Lemma

1.1.6, each of the random variables

Uk ≡
∞∑
`=1

Yk,`
2`

, k ∈ Z+,

is uniformly distributed on [0, 1). In addition, the Uk’s are obviously mutually
independent. Hence, we have now produced a sequence of mutually independent
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random variables, each of which is uniformly distributed on [0, 1). To complete
our program, we use the time-honored transformation which takes a uniform
random variable into an arbitrary one. Namely, given a distribution function
F on R (i.e., F is a right-continuous, nondecreasing function which tends to 0
at −∞ and 1 at +∞), define F−1 on [0, 1] to be the left-continuous inverse of
F . That is,

F−1(t) = inf{s ∈ R : F (s) ≥ t}, t ∈ [0, 1].

(Throughout, the infimum over the empty set is taken to be +∞.) It is then an
easy matter to check that when U is uniformly distributed on [0, 1) the random
variable X = F−1 ◦ U has distribution function F :

P(X ≤ t) = F (t), t ∈ R.

Hence, after combining this with what we already know, we have now completed
the proof of the following theorem.

Theorem 1.1.7. Let Ω = [0, 1), F = B[0,1), and P = λ[0,1). Then for any

sequence {Fk : k ∈ Z+} of distribution functions on R there exists a sequence
{Xk : k ∈ Z+} of P-independent random variables on (Ω,F ,P) with the property
that P

(
Xk ≤ t

)
= Fk(t), t ∈ R, for each k ∈ Z+.

Exercises for § 1.1

Exercise 1.1.8. As we pointed out, P
(
A1 ∩ A2

)
= P

(
A1)P

(
A2

)
if and only

if the σ-algebra generated by A1 is P-independent of the one generated by A2.
Construct an example to show that the analogous statement is false when dealing
with three, instead of two, sets. That is, just because P

(
A1 ∩ A2 ∩ A3

)
=

P
(
A1

)
P
(
A2

)
P
(
A3

)
, it is not necessarily true that the three σ-algebras generated

by A1, A2, and A3 are P-independent.
Next, for any A ∈ F , show that {B ∈ F : P(A ∩ B) = P(A)P(B)} is a σ-

algebra. Use this to conclude that if, for each i ∈ I, Fi is the smallest σ-algebra
σ(Ci) containing Ci ⊆ F , then {Fi : i ∈ I} are mutually independent if (1.1.1)
holds for Aim ∈ Cim , 1 ≤ m ≤ n.

Exercise 1.1.9. In this exercise we point out two elementary, but important,
properties of independent random variables. Throughout, (Ω,F ,P) is a given
probability space.

(i) Let X1 and X2 be a pair of P-independent random variables with values in
the measurable spaces (E1,B1) and (E2,B2), respectively. Given a B1 × B2-
measurable function F : E1×E2 −→ R which is either nonnegative or bounded,
use Tonelli’s or Fubini’s Theorem to show that

x2 ∈ E2 7−→ f(x2) ≡ EP
[
F
(
X1, x2

)]
∈ R
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is B2-measurable and that

EP
[
F
(
X1, X2

)]
= EP

[
f
(
X2

)]
.

(ii) Suppose that X1, . . . , Xn are P-independent, real-valued random variables.
If each of the Xm’s is P -integrable, show that X1 · · ·Xn is also P -integrable and
that

EP[X1 · · ·Xn

]
= EP[X1

]
· · ·EP[Xn

]
.

Exercise 1.1.10. Given a nonempty set Ω, recall∗ that a collection C of subsets
of Ω is called a π-system if C is closed under finite intersections. At the same
time, recall that a collection L is called a λ-system if Ω ∈ L, A ∪ B ∈ L
whenever A and B are disjoint members of L, B \A ∈ L whenever A and B are
members of L with A ⊆ B, and

⋃∞
1 An ∈ L whenever {An}∞1 is a nondecreasing

sequence of members of L. Finally, recall (cf. Lemma 3.1.3 in ibid.) that if C is
a π-system, then the σ-algebra σ(C) is the smallest L-system L ⊇ C.

Show that if C is a π-system and F = σ(C), then two probability measures P
and Q are equal on F if they are equal on C.

Exercise 1.1.11. In this exercise we discuss two criteria for determining when
random variables on the probability space (Ω,F ,P) are independent.

(i) Let X1, . . . , and Xn be bounded, real-valued random variables. Using Weier-
strass’s approximation theorem, show that the Xm’s are P-independent if and
only if

EP[Xm1
1 · · ·Xmn

n

]
= EP[Xm1

1

]
· · ·EP[Xmn

n

]
for all m1, . . . ,mn ∈ N.

(ii) Let X : Ω −→ Rm and Y : Ω −→ Rn be random variables. Show that X
and Y are P-independent if and only if

EP
[
exp
[√
−1
((
α,X

)
Rm +

(
β,Y

)
Rn

)]]
= EP

[
exp
[√
−1
(
α,X

)
Rm

]]
EP
[
exp
[√
−1
(
β,Y

)
Rn

]]
for all α ∈ Rm and β ∈ Rn.

Hint: The only if assertion is obvious. To prove the if assertion, first check
that X and Y are independent if

EP[f(X) g(Y)
]

= EP[f(X)
]
EP[g(Y)

]
∗ See, for example, §3.1 in the author’s A Concise Introduction to the Theory of Integration,
Third Edition publ. by Birkhäuser (1998).
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for all f ∈ C∞c
(
Rm; C

)
and g ∈ C∞c

(
Rn; C

)
. Second, given such f and g, apply

elementary Fourier analysis to write

f(x) =
∫

Rm
e
√
−1 (α,x)Rm ϕ(α) dα and g(y) =

∫
Rn
e
√
−1 (β,y)Rn ψ(β) dβ,

where ϕ and ψ are smooth functions with rapidly decreasing (i.e., tending
to 0 as |x| → ∞ faster than any power of (1 + |x|)−1) derivatives of all orders.
Finally, apply Fubini’s Theorem.

Exercise 1.1.12. Given a pair of measurable spaces (E1,B1) and (E2,B2),
recall that their product is the measurable space

(
E1 × E2,B1 × B2

)
, where

B1×B2 is the σ-algebra over the Cartesian product space E1×E2 generated by
the sets Γ1 × Γ2, Γi ∈ Bi. Further, recall that, for any probability measures µi
on (Ei,Bi), there is a unique probability measure µ1×µ2 on

(
E1×E2,B1×B2

)
such that

(µ1 × µ2)
(
Γ1 × Γ2

)
= µ1(Γ1)µ2(Γ2) for Γi ∈ Bi.

More generally, for any n ≥ 2 and measurable spaces
{

(Ei,Bi)
}n

1
, one takes∏n

1 Bi to be the σ-algebra over
∏n

1 Ei generated by the sets
∏n

1 Γi, Γi ∈ Bi. In
particular, since

∏n+1
1 Ei and

∏n+1
1 Bi can be identified with (

∏n
1 Ei)×En+1 and

(
∏n

1 Bi)×Bn+1, respectively, one can use induction to show that, for every choice
of probability measures µi on (Ei,Bi), there is a unique probability measure∏n

1 µi on (
∏n

1 Ei,
∏n

1 Bi) such that(
n∏
1

µi

)(
n∏
1

Γi

)
=

n∏
1

µi(Γi), Γi ∈ Bi.

The purpose of this exercise is to generalize the preceding construction to
infinite collections. Thus, let I be an infinite index set, and, for each i ∈ I, let
(Ei,Bi) be a measurable space. Given ∅ 6= Λ ⊆ I, we will use EΛ to denote the
Cartesian product space

∏
i∈ΛEi and πΛ to denote the natural projection map

taking EI onto EΛ. Further, we use BI =
∏
i∈I Bi to stand for the σ-algebra

over EI generated by the collection C of subsets

π−1
F

(∏
i∈F

Γi

)
, Γi ∈ Bi,

as F varies over nonempty, finite subsets of I (abbreviated by: ∅ 6= F ⊂⊂ I).
In the following steps, we will outline a proof that, for every choice of proba-
bility measures µi on (Ei,Bi), there is a unique probability measure

∏
i∈I µi on(

EI,BI

)
with the property that

(1.1.13)

(∏
i∈I

µi

)(
π−1
F

(∏
i∈F

Γi

))
=
∏
i∈F

µi
(
Γi
)
, Γi ∈ Bi,
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for every ∅ 6= F ⊂⊂ I. Not surprisingly, the probability space(∏
i∈I

Ei,
∏
i∈I

Bi,
∏
i∈I

µi

)

is called the product over I of the spaces
(
Ei,Bi, µi

)
; and when all the factors

are the same space
(
E,B, µ

)
, it is customary to denote it by

(
EI,BI, µI

)
, and

if, in addition, I = {1, . . . , N}, one uses
(
EN ,BN , µN

)
.

(i) After noting that two probability measures which agree on a π-system agree
on the σ-algebra generated by that π-system, show that there is at most one
probability measure on

(
EI,BI

)
which satisfies the condition in (1.1.13). Hence,

the problem is purely one of existence.

(ii) Let A be the algebra over EI generated by C, and show that there is a finitely
additive µ : A −→ [0, 1] with the property that

µ
(
π−1
F

(
ΓF
))

=

(∏
i∈F

µi

)(
ΓF
)
, ΓF ∈ BF ,

for all ∅ 6= F ⊂⊂ I. Hence, all that we have to do is check that µ admits a σ-
additive extension to BI, and, by Carathéodory’s Extension Theorem, this comes
down to checking that µ(An) ↘ 0 whenever {An}∞1 ⊆ A and An ↘ ∅. Thus,
let {An}∞1 be a nonincreasing sequence from A, and assume that µ(An) ≥ ε for
some ε > 0 and all n ∈ Z+. We must show that

⋂∞
1 An 6= ∅.

(iii) Referring to the last part of (ii), show that there is no loss in generality
if we assume that An = π−1

Fn

(
ΓFn
)
, where, for each n ∈ Z+, ∅ 6= Fn ⊂⊂ I and

ΓFn ∈ BFn . In addition, show that we may assume that F1 = {i1} and that
Fn = Fn−1 ∪ {in}, n ≥ 2, where {in}∞1 is a sequence of distinct elements of I.
Now, make these assumptions and show that it suffices for us to find a` ∈ Ei` ,
` ∈ Z+, with the property, for each m ∈ Z+, (a1, . . . , am) ∈ ΓFm .

( iv) Continuing (iii), for each m, n ∈ Z+, define gm,n : EFm −→ [0, 1] so that

gm,n
(
xFm

)
= 1ΓFn

(
xi1 , . . . , xin

)
if n ≤ m

and

gm,n
(
xFm

)
=
∫
EFn\Fm

1ΓFn

(
xFm ,yFn\Fm

) ( n∏
`=m+1

µi`

)(
dyFn\Fm

)
if n > m. After noting that, for each m and n, gm,n+1 ≤ gm,n and

gm,n
(
xFm

)
=
∫
Eim+1

gm+1,n

(
xFm , yim+1

)
µim+1

(
dyim+1

)
,
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set gm = limn→∞ gm,n and conclude that

gm
(
xFm

)
=
∫
Eim+1

gm+1

(
xFm , yim+1

)
µim+1

(
dyim+1

)
.

In addition, note that∫
Ei1

g1

(
xi1
)
µi1
(
dxi1

)
= lim
n→∞

∫
Ei1

g1,n

(
xi1
)
µi1
(
dxi1

)
= lim
n→∞

µ(An) ≥ ε,

and proceed by induction to produce a` ∈ Ei` , ` ∈ Z+, so that

gm
(
(a1, . . . , am)

)
≥ ε for all m ∈ Z+.

Finally, check that {am}∞1 is a sequence of the sort for which we were looking
at the end of part (iii).

Exercise 1.1.14. Recall that if Φ is a measurable map from one measurable
space (E,B) into a second one (E′,B′), then the distribution of Φ under a
measure µ on (E,B) is the pushforward measure Φ∗µ (also denoted by µ◦Φ−1)
defined on (E′,B′) by

Φ∗µ(Γ) = µ
(
Φ−1(Γ)

)
for Γ ∈ B′.

Given a nonempty index set I and, for each i ∈ I, a measurable space (Ei,Bi)
and an Ei-valued random variable Xi on the probability space (Ω,F ,P), define
X : Ω −→

∏
i∈IEi so that X(ω)i = Xi(ω) for each i ∈ I and ω ∈ Ω. Show

that
{
Xi : i ∈ I

}
is a family of P-independent random variables if and only if

X∗P =
∏
i∈I(Xi)∗P . In particular, given probability measures µi on (Ei,Bi),

set
Ω =

∏
i∈I

Ei, F =
∏
i∈I

Bi, P =
∏
i∈I

µi,

let Xi : Ω −→ Ei be the natural projection map from Ω onto Ei, and show that
{Xi : i ∈ I} is a family of mutually P-independent random variables such that,
for each i ∈ I, Xi has distribution µi.

Exercise 1.1.15. Although it does not entail infinite product spaces, an inter-
esting example of the way in which the preceding type of construction can be
effectively applied is provided by the following elementary version of a coupling
argument.
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(i) Let (Ω,B,P) be a probability space and X and Y a pair of square P-integrable
R-valued random variables with the property that(

X(ω)−X(ω′)
) (
Y (ω)− Y (ω′)

)
≥ 0 for all (ω, ω′) ∈ Ω2.

Show that
EP[X Y

]
≥ EP[X] EP[Y ].

Hint: Define Xi and Yi on Ω2 for i ∈ {1, 2} so that Xi(ω) = X(ωi) and
Yi(ω) = Y (ωi) when ω = (ω1, ω2), and integrate the inequality

0 ≤
(
X(ω1)−X(ω2)

) (
Y (ω1)− Y (ω2)

)
=
(
X1(ω)−X2(ω)

) (
Y1(ω)− Y2(ω)

)
with respect to P2.

(ii) Suppose that n ∈ Z+ and that f and g are R-valued, Borel measurable
functions on Rn which are nondecreasing with respect to each coordinate (sep-
arately). Show that if X =

(
X1, . . . , Xn

)
is an Rn-valued random variable on a

probability space (Ω,B,P) whose coordinates are mutually P-independent, then

EP[f(X) g(X)
]
≥ EP[f(X)

]
EP[g(X)

]
so long as f(X) and g(X) are both square P-integrable.

Hint: First check that the case when n = 1 reduces to an application of (i).
Next, describe the general case in terms of a multiple integral, apply Fubini’s
Theorem, and make repeated use of the case when n = 1.

Exercise 1.1.16. A σ-algebra is said to be countably generated if it contains
a countable collection of sets which generate it. In this exercise, we will show
that just because a σ-algebra is itself countably generated does not mean that
all its sub-σ-algebras are.

Let (Ω,F ,P) be a measurable space and
{
Fn : n ∈ Z+

}
be a sequence of P-

independent sub-σ-algebras of F . Further, assume that, for each n ∈ Z+, there
is an An ∈ Fn which satisfies α ≤ P

(
An
)
≤ 1−α for some fixed α ∈ (0, 1

2 ). Show
that the tail σ-algebra T determined by

{
Fn : n ∈ Z+

}
cannot be countably

generated.

Hint: First, reduce to the case when each Fn is generated by the set An. After
making this reduction, show that C is an atom in T (i.e., B = C whenever
B ∈ T \ {∅} is contained in C) only if one can write

C = lim
n→∞

Cn ≡
∞⋃
m=1

⋂
n≥m

Cn
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where, for each n ∈ Z+, Cn equals either An or An{. Conclude that every
atom in T must have P-measure 0. Now suppose that T were generated by{
B` : ` ∈ N

}
. By Kolmogorov’s 0–1 Law (cf. Theorem 1.1.2), P

(
B`
)
∈ {0, 1}

for every ` ∈ N. Take

B̂` =
{
B` if P

(
B`
)

= 1

B`{ if P
(
B`
)

= 0
and set C =

⋂
`∈N

B̂`.

Note that, on the one hand, P(C) = 1, while, on the other hand, C is an atom
in T and therefore has probability 0.

Exercise 1.1.17. Here is an interesting application of Kolmogorov’s 0–1 Law
to a property of the real numbers.

(i) Referring to the discussion preceding Lemma 1.1.6, define the transformations
Tn : [0, 1) −→ [0, 1) for n ∈ Z+ so that

Tn(ω) = ω − 1 +Rn(ω)
2n+1

, ω ∈ [0, 1),

and notice (cf. the proof of Lemma 1.1.6) that Tn(ω) simply flips the nth coeffi-
cient in the binary expansion ω. Next, let Γ ∈ B[0,1), and show that Γ is measur-
able with respect of the σ-algebra σ

(
Rn : n > m

)
generated by {Rn : n > m}

if and only if Tn(Γ) = Γ for each 1 ≤ n ≤ m. In particular, conclude that
λ[0,1)(Γ) ∈ {0, 1} if TnΓ = Γ for every n ∈ Z+.

(ii) Let F denote the set of all finite subsets of Z+, and for each F ∈ F, define
TF : [0, 1) −→ [0, 1) so that T ∅ is the identity mapping and

TF∪{m} = TF ◦ Tm for each F ∈ F and m ∈ Z+ \ F.

As an application of (i), show that for every Γ ∈ B[0,1) with λ[0,1)(Γ) > 0,

λ[0,1)

(⋃
F∈F

TF (Γ)

)
= 1.

In particular, this means that if Γ has positive measure, then almost every
ω ∈ [0, 1) can be moved to Γ by flipping a finite number of the coefficients in the
binary expansion of ω.

§1.2 The Weak Law of Large Numbers

Starting with this section, and for the rest of this chapter, we will be studying
what happens when one averages P-independent, real-valued random variables.
The remarkable fact, which will be confirmed repeatedly, is that the limiting
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behavior of such averages depends hardly at all on the variables involved. Intu-
itively, one can explain this phenomenon by pretending that the random vari-
ables are building blocks which, in the averaging process, first get homothetically
shrunk and then reassembled according to a regular pattern. Hence, by the time
that one passes to the limit, the peculiarities of the original blocks get lost.

Throughout our discussion, (Ω,F ,P) will be a probability space on which we
have a sequence {Xn}∞1 of real-valued random variables. Given n ∈ Z+, we will
use Sn to denote the partial sum X1 + · · ·+Xn and Sn to denote the average

Sn
n

=
1
n

n∑
`=1

X`.

§1.2.1. Orthogonal Random Variables. Our first result is a very general
one; in fact, it even applies to random variables which are not necessarily inde-
pendent and do not necessarily have mean 0.

Lemma 1.2.1. Assume that

EP[X2
n

]
<∞ for n ∈ Z+ and EP[XkX`

]
= 0 if k 6= `.

Then, for each ε > 0,

(1.2.2) ε2 P
(∣∣Sn∣∣ ≥ ε) ≤ EP[S2

n

]
=

1
n2

n∑
`=1

EP[X2
`

]
for n ∈ Z+.

In particular, if
M ≡ sup

n∈Z+
EP[X2

n

]
<∞,

then

(1.2.3) ε2 P
(∣∣Sn∣∣ ≥ ε) ≤ EP[S 2

n

]
≤ M

n
, n ∈ Z+ and ε > 0;

and so Sn −→ 0 in L2(P ) and also in P-probability.

Proof: To prove the equality in (1.2.2), note that, by by orthognality,

EP[S 2
n

]
=

n∑
`=1

EP[X2
`

]
.

The rest is just an application of Chebyshev’s inequality, the estimate which
results after integrating the inequality

ε21[ε,∞)

(
|Y |
)
≤ Y 21[ε,∞)

(
|Y |
)
≤ Y 2
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for any random variable Y . �

§1.2.2. Indenpendent Random Variables. Although Lemma 1.2.1 does
not use independence, independent random variables provide a ready source of
orthogonal functions. Indeed, recall that for any P-integrable random variable
X, its variance var(X) satisfies

var(X) ≡ EP
[(
X − EP[X]

)2]
= EP[X2

]
−
(
EP[X]

)2 ≤ EP[X2
]
.

In particular, if the random variables Xn, n ∈ Z+, are P-square integral and
P-independent, then the random variables

X̂n ≡ Xn − EP[Xn

]
n ∈ Z+,

are still square P-integrable, have mean-value 0, and therefore satisfy the hy-
potheses in Lemma 1.2.1. Hence, the following statement is an immediate con-
sequence of that lemma.

Theorem 1.2.4. Let
{
Xn : n ∈ Z+

}
be a sequence of P-independent, square

P-integrable random variables with mean-value m and variance dominated by
σ2. Then, for every n ∈ Z+ and ε > 0:

(1.2.5) ε2 P
(∣∣Sn −m∣∣ ≥ ε) ≤ EP

[(
Sn −m

)2] ≤ σ2

n
.

In particular, Sn −→ m in L2(P ) and therefore in P-probability.

As yet we have only made minimal use of independence: all that we have done
is subtract off the mean of independent random variables and thereby made them
orthogonal. In order to bring the full force of independence into play, one has to
exploit the fact that one can compose independent random variables with any
(measurable) functions without destroying their independence; in particular,
truncating independent random variables does not destroy independence. To see
how such a property can be brought to bear, we will now consider the problem
of extending the last part of Theorem 1.2.4 to Xn’s which are less than square
P-integrable. In order to understand the statement, recall that a family

{
Xi :

i ∈ I
}

of random variables is said to be uniformly P-integrable if

(1.2.6) lim
R↗∞

sup
i∈I

EP
[∣∣Xi

∣∣, ∣∣Xi

∣∣ ≥ R] = 0.

As the proof of the following theorem illustrates, the importance of this condition
is that it allows one to simultaneously approximate the random variables Xi, i ∈
I, by bounded random variables.
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Theorem 1.2.7 (The Weak Law of Large Numbers). Let
{
Xn : n ∈ Z+

}
be a uniformly P-integrable sequence of P-independent random variables. Then

1
n

n∑
1

(
Xm − EP[Xm]

)
−→ 0 in L1(P )

and, therefore, also in P-probability. In particular, if
{
Xn : n ∈ Z+

}
is a

sequence of P-independent, P-integrable random variables which are identically
distributed, then Sn −→ EP[X1

]
in L1(P ) and P-probability. (Cf. Exercise

1.2.12 below.)

Proof: Without loss in generality, we will assume that EP[Xn] = 0 for every
n ∈ Z+.

For each R ∈ (0,∞), define fR(t) = t1[−R,R](t), t ∈ R,

m(R)
n = EP[fR ◦Xn

]
, X(R)

n = fR ◦Xn −m(R)
n , and Y (R)

n = Xn −X(R)
n ,

and set

S
(R)

n =
1
n

n∑
`=1

X
(R)
` and T

(R)

n =
1
n

n∑
`=1

Y
(R)
` .

Since E[Xn] = 0 =⇒ m
(R)
n = −E

[
Xn, |Xn| > R

]
,

EP
[∣∣Sn∣∣] ≤ EP

[∣∣S(R)

n

∣∣]+ EP
[∣∣T (R)

n

∣∣]
≤ EP

[∣∣S(R)

n

∣∣2] 1
2

+ 2 max
1≤`≤n

EP
[∣∣X`

∣∣, |X`| ≥ R
]

≤ R√
n

+ 2 max
`∈Z+

EP
[∣∣X`

∣∣, |X`| ≥ R
]
;

and therefore, for each R > 0,

lim
n→∞

EP
[∣∣Sn∣∣] ≤ 2 sup

`∈Z+
EP
[∣∣X`

∣∣, |X`| ≥ R
]
.

Hence, because the X`’s are uniformly P-integrable, we get the desired conver-
gence in L1(P ) by letting R↗∞. �
§1.2.3. Approximate Identities. The name of Theorem 1.2.7 comes from
a somewhat invidious comparison with the result in Theorem 1.4.9. The reason
why the appellation weak is not entirely fair is that, although The Weak Law
is indeed less refined than the result in Theorem 1.4.9, it is every bit as useful
as the one in Theorem 1.4.9 and maybe even more important when it comes to
applications. What The Weak Law does is provide us with a ubiquitous tech-
nique for constructing an approximate identity (i.e., a sequence of measures
which approximate a point mass) and measuring how fast the approximation is
taking place. To illustrate how clever selection of the random variables entering
The Weak Law can lead to interesting applications, we will spend the rest of
this section discussing S. Bernstein’s approach to Weierstrass’s approximation
theorem.
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For a given p ∈ [0, 1], let
{
Xn : n ∈ Z+

}
be a sequence of P-independent

{0, 1}-valued Bernoulli random variables with mean-value p. Then

P
(
Sn = `

)
=
(
n

`

)
p`(1− p)n−` for 0 ≤ ` ≤ n.

Hence, for any f ∈ C
(
[0, 1]; R

)
, the nth Bernstein polynomial

(1.2.8) Bn(p; f) ≡
n∑
`=0

(
n

`

)
f

(
`

n

)
p`(1− p)n−`

of f at p is equal to
EP[f ◦ Sn].

In particular,∣∣f(p)−Bn(p; f)
∣∣ =

∣∣EP[f(p)− f ◦ Sn
]∣∣ ≤ EP[∣∣f(p)− f ◦ Sn

∣∣]
≤ 2‖f‖uP

(∣∣Sn − p∣∣ ≥ ε)+ ρ(ε; f),

where ‖f‖u is the uniform norm of f (i.e., the supremum of |f | over the domain
of f) and

ρ(ε; f) ≡ sup
{
|f(t)− f(s)| : 0 ≤ s < t ≤ 1 with t− s ≤ ε

}
is the modulus of continuity of f . Noting that var

(
Xn

)
= p(1 − p) ≤ 1

4 and
applying (1.2.5), we conclude that, for every ε > 0,

∥∥f(p)−Bn(p; f)
∥∥

u
≤ ‖f‖u

2nε2
+ ρ(ε; f)

In other words, for all n ∈ Z+,

(1.2.9)
∥∥f −Bn(· ; f)

∥∥
u ≤ β(n; f) ≡ inf

{
‖f‖u
2nε2

+ ρ(ε; f) : ε > 0
}
.

Obviously, (1.2.9) not only shows that, as n → ∞, Bn(· ; f) −→ f uniformly
on [0, 1], but it even provides a rate of convergence in terms of the modulus of
continuity of f . Thus, we have done more than simply prove Weierstrass’s theo-
rem; we have produced a rather explicit and tractable sequence of approximating
polynomials, the sequence

{
Bn(· ; f) : n ∈ Z+

}
. Although this sequence is, by

no means, the most efficient one,∗ as we are about to see, the Bernstein polyno-
mials have a lot to recommend them. In particular, they have the feature that

∗ See G.G. Lorentz’s Bernstein Polynomials, Chelsea Publ. Co., New York (1986) for a lot
more information.
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they provide nonnegative polynomial approximants to nonnegative functions.
In fact, the following discussion reveals much deeper nonnegativity preservation
properties possessed by the Bernstein approximation scheme.

In order to bring out the virtues of the Bernstein polynomials, it is impor-
tant to replace (1.2.8) with an expression in which the coefficients of Bn( · ; f)
(as polynomials) are clearly displayed. To this end, introduce the difference
operator ∆h for h > 0 given by

[
∆hf

]
(t) =

f(t+ h)− f(t)
h

.

A straightforward inductive argument (using Pascal’s identity for the binomials
coefficients) shows that

(−h)m
[
∆(m)
h f

]
(t) =

m∑
`=0

(−1)`
(
m

`

)
f(t+ `h) for m ∈ Z+,

where ∆(m)
h denotes the mth iterate of the operator ∆h. Taking h = 1

n , we now
see that

Bn(p; f) =
n∑
`=0

n−∑̀
k=0

(
n

`

)(
n− `
k

)
(−1)kf(`h)p`+k

=
n∑
r=0

pr
r∑
`=0

(
n

`

)(
n− `
r − `

)
(−1)r−`f(`h)

=
n∑
r=0

(−p)r
(
n

r

) r∑
`=0

(
r

`

)
(−1)`f(`h)

=
n∑
r=0

(
n

r

)
(ph)r

[
∆(r)
h f

]
(0),

where
[
∆0
hf
]
≡ f . Hence, we have proved that

(1.2.10) Bn(p; f) =
n∑
`=0

n−`
(
n

`

)[
∆(`)

1
n

f
]

(0)p` for p ∈ [0, 1].

The marked resemblance between the expression on the right-hand side of
(1.2.10) and a Taylor polynomial is more than coincidental. To demonstrate how
one can exploit the relationship between Bernstein and Taylor polynomials, say
that a function ϕ ∈ C∞

(
(a, b); R

)
is absolutely monotone if its mth derivative

Dmϕ is nonnegative for every m ∈ N. Also, say that ϕ ∈ C∞
(
[0, 1]; [0, 1]) is a
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probability generating function if there exists a
{
un : n ∈ N

}
⊆ [0, 1] such

that
∞∑
n=0

un = 1 and ϕ(t) =
∞∑
n=0

unt
n for t ∈ [0, 1].

Obviously, every probability generating function is absolutely monotone on (0, 1).
The somewhat surprising (remember that most infinitely differentiable functions
do not admit power series expansions) fact which we are about to prove is that,
apart from a multiplicative constant, the converse is also true. In fact, we do
not need to know, a priori, that the function is smooth so long as it satisfies a
discrete version of absolute monotonicity.

Theorem 1.2.11. Let ϕ ∈ C
(
[0, 1]; R

)
with ϕ(1) = 1 be given. Then the

following are equivalent:

(i) ϕ is a probability generating function,

(ii) the restriction of ϕ to (0, 1) is absolutely monotone;

(iii)
[
∆(m)

1
n

ϕ
]
(0) ≥ 0 for every n ∈ N and 0 ≤ m ≤ n.

Proof: The implication (i) =⇒ (ii) is trivial. To see that (ii) implies (iii), first
observe that if ψ is absolutely monotone on (a, b) and h ∈ (0, b−a), then

[
∆hψ

]
is absolutely monotone on (a, b − h). Indeed, because

[
D ◦∆hψ

]
=
[
∆h ◦Dψ

]
on (a, b− h), we see that

h
[
Dm ◦∆hψ

]
(t) =

∫ t+h

t

Dm+1ψ(s) ds ≥ 0, t ∈ (a, b− h),

for any m ∈ N. Returning to the function ϕ, we now know that
[
∆(m)
h ϕ

]
is

absolutely monotone on (0, 1 −mh) for all m ∈ N and h > 0 with mh < 1. In
particular, [

∆(m)
h ϕ

]
(0) = lim

t↘0

[
∆(m)
h ϕ

]
(t) ≥ 0 if mh < 1,

and so
[
∆(m)
h ϕ

]
(0) ≥ 0 when h = 1

n and 0 ≤ m < n. Moreover, since[
∆(n)

1
n

ϕ
]
(0) = lim

h↗ 1
n

[
∆(n)
h ϕ

]
(0),

we also know that
[
∆n
hϕ
]
(0) ≥ 0 when h = 1

n , and this completes the proof that
(ii) implies (iii).

Finally, assume that (iii) holds and set ϕn = Bn( · ;ϕ). Then, by (1.2.10) and
the equality ϕn(1) = ϕ(1) = 1, we see that each ϕn is a probability generating
function. Thus, in order to complete the proof that (iii) implies (i), all that we
have to do is check that a uniform limit of probability generating functions is
itself a probability generating function. To this end, write

ϕn(t) =
∞∑
`=0

un,`t
`, t ∈ [0, 1] for each n ∈ Z+.
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Because the un,`’s are all elements of [0, 1], we can use a diagonalization proce-
dure to choose {nk : k ∈ Z+} so that

lim
k→∞

unk,` = u` ∈ [0, 1]

exists for each ` ∈ N. But, by Lebesgue’s Dominated Convergence Theorem,
this means that

ϕ(t) = lim
k→∞

ϕnk(t) =
∞∑
`=0

u`t
` for every t ∈ [0, 1).

Finally, by the Monotone Convergence Theorem, the preceding extends imme-
diately to t = 1, and so ϕ is a probability generating function. (Notice that
the argument just given does not even use the assumed uniform convergence
and shows that the pointwise limit of probability generating functions is again
a probability generating function.) �

The preceding is only one of many examples in which The Weak Law leads
to useful ways of forming an approximate identity. A second example is given
in Exercises 1.2.13 and 1.4.22 below. My treatment these is based on that of
Wm. Feller,∗ who provides several other similar applications of The Weak Law,
including the ones in the following exercises.

Exercises for § 1.2

Exercise 1.2.12. Although, for historical reasons, The Weak Law is usually
thought of as a theorem about convergence in P-probability, the forms in which
we have presented it are clearly results about convergence in either P-mean or
even square P-mean. Thus, it is interesting to discover that one can replace the
uniform integrability assumption made in Theorem 1.2.7 with a weak uniform in-
tegrability assumption if one is willing to settle for convergence in P-probability.
Namely, let X1, . . . , Xn, . . . be mutually P-independent random variables, as-
sume that

F (R) ≡ sup
n∈Z+

RP
(
|Xn| ≥ R

)
−→ 0 as R↗∞,

and set

mn =
1
n

n∑
`=1

EP
[
X`, |X`| ≤ n

]
, n ∈ Z+.

Show that, for each ε > 0,

P
(∣∣Sn −mn

∣∣ ≥ ε) ≤ 1
(nε)2

n∑
`=1

EP
[
X2
` ,
∣∣X`

∣∣ ≤ n]+ P
(

max
1≤`≤n

∣∣X`

∣∣ > n
)

≤ 2
nε2

∫ n

0

F (t) dt+ F (n);

∗ Wm. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, J. Wiley
Series in Probability and Math. Stat. (1968).
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and conclude that
∣∣Sn −mn

∣∣ −→ 0 in P-probability. (See part (ii) of Exercises
1.4.25 and 1.5.12 for a partial converse to this statement.)

Hint: Use the formula

var(Y ) ≤ EP[Y 2
]

= 2
∫

[0,∞)

t P
(
|Y | > t

)
dt.

Exercise 1.2.13. Show that, for each T ∈ [0,∞) and t ∈ (0,∞),

lim
n→∞

e−nt
∑
k≤nT

(nt)k

k!
=
{

1 if T > t

0 if T < t.

Hint: Let X1, . . . , Xn, . . . be P-independent Poisson random variables on
N with mean-value t. That is, the Xn’s are P-independent and

P
(
Xn = k

)
= e−t

tk

k!
for k ∈ N.

Show that Sn is a Poisson random variable on N with mean-value nt, and con-
clude that, for each T ∈ [0,∞) and t ∈ (0,∞),

e−nt
∑
k≤nT

(nt)k

k!
= P

(
Sn ≤ T

)
.

Exercise 1.2.14. Given a right-continuous function F : [0,∞) −→ R of bound-
ed variation with F (0) = 0, define its Laplace transform ϕ(λ), λ ∈ [0,∞), by
the Riemann–Stieltjes integral

ϕ(λ) =
∫

[0,∞)

e−λt dF (t).

Using Exercise 1.2.13, show that

∑
k≤nT

(−n)k

k!
[
Dkϕ

]
(n) −→ F (T ) as n→∞

for each T ∈ [0,∞) at which F is continuous. Conclude, in particular, that F can
be recovered from its Laplace transform. Although this is not the most practical
recovery method, it is one of the only ones that does not involve complex analysis.
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§1.3 Cramér’s Theory of Large Deviations

From Theorem 1.2.4, we know that if
{
Xn : n ∈ Z+

}
is a sequence of P-

independent, square P-integrable random variables with mean-value 0, and if
the averages Sn, n ∈ Z+, are defined accordingly, then, for every ε > 0,

P
(∣∣Sn∣∣ ≥ ε) ≤ max1≤m≤n var(Xm)

nε2
, n ∈ Z+.

Thus, so long as
var(Xn)

n
−→ 0 as n→∞,

the Sn’s are becoming more and more concentrated near 0, and the rate at
which this concentration is occurring can be estimated in terms of the variances
var(Xn). In this section, we will show that, by placing more stringent integra-
bility requirements on the Xn’s, one can gain more information about the rate
at which the Sn’s are concentrating.

In all of this analysis, the trick is to see how independence can be combined
with 0 mean-value to produce unexpected cancellations; and, as a preliminary
warm-up exercise, we begin with the following.

Theorem 1.3.1. Let {Xn : n ∈ Z+} be a sequence of P-independent, P-
integrable random variables with mean-value 0, and assume that

M4 ≡ sup
n∈Z+

EP[X 4
n

]
<∞.

Then, for each ε > 0,

(1.3.2) ε4P
(∣∣Sn∣∣ ≥ ε) ≤ EP

[
Sn

4
]
≤ 3M4

n2
, n ∈ Z+;

In particular, Sn −→ 0 P-almost surely.

Proof: Obviously, in order to prove (1.3.2), it suffices to check the second
inequality, which is equivalent to EP[S4

n

]
≤ 3M4n

2. But

EP[S4
n

]
=

n∑
m1,...,m4=1

EP[Xm1 · · ·Xm4

]
,

and, by Schwarz’s inequality, each of these terms is dominated by M4. In addi-
tion, of these terms, the only ones which do not vanish either all their factors
the same or two pairs of equal factors. Thus, the number of non-vanishing terms
is n+ 3n(n− 1) = 3n2 − 2n.
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Given (1.3.2), the proof of the last part becomes an easy application of the
Borel–Cantelli Lemma. Indeed, for any ε > 0, we know from (1.3.2) that

∞∑
n=1

P
(∣∣Sn∣∣ ≥ ε) <∞,

and therefore, by (1.1.4), that

P
(

lim
n→∞

∣∣Sn∣∣ ≥ ε) = 0. �

Remark 1.3.3. The final assertion in Theorem 1.3.1 is a primitive version of
The Strong Law of Large Numbers and represents the first time that we have
actually used the simultaneous existence of infinitely many mutually independent
random variables (previously, and for the rest of this section, it will be enough
to know that there are, at any given moment, an arbitrary but finite number).
Although The Strong Law will be taken up again, and considerably refined, in
Section 1.4, the principle on which its proof here was based is an important
one: namely, control more moments and you will get better estimates; get better
estimates and you will reach more refined conclusions.

With the preceding adage in mind, we will devote the rest of this section to
examining what one can say when one has all moments at one’s disposal. In fact,
from now on, we will be assuming that X1, . . . , Xn, . . . are independent random
variables with common distribution µ having the property that the moment
generating function

(1.3.4) Mµ(ξ) ≡
∫

R
eξ x µ(dx) <∞ for all ξ ∈ R.

Obviously, (1.3.4) is more than sufficient to guarantee that the Xn’s have mo-
ments of all orders. In fact, as an application of Lebesgue’s Dominated Conver-
gence Theorem, one sees that ξ ∈ R 7−→M(ξ) ∈ (0,∞) is infinitely differentiable
and that

EP[Xn
1

]
=
∫

R
xn µ(dx) =

dnM

dξn
(0) for all n ∈ N.

In the discussion which follows, we will use m and σ2 to denote, respectively,
the common mean-value and variance of the Xn’s.

In order to develop some intuition for the considerations which follow, we
first consider an example, which, for many purposes, is the canonical example in
probability theory. Namely, let g : R −→ (0,∞) be the Gauss kernel

(1.3.5) g(y) ≡ 1√
2π

exp
[
−|y|

2

2

]
, y ∈ R;
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and recall that a random variable X is standard normal if

P
(
X ∈ Γ

)
=
∫

Γ

g(y) dy, Γ ∈ BR.

In spite of their somewhat insultingly bland moniker, standard normal random
variables are the building blocks for the most honored family in all of probability
theory. Indeed, given m ∈ R and σ ∈ [0,∞), the random variable Y is said to be
normal (or Gaussian) with mean-value m and variance σ2 (often this is
abbreviated by saying that X is an N

(
m,σ2

)
-random variable) if and only if

the distribution of Y is γm,σ2 , where γm,σ2 is the distribution of variable σX+m
when X is standard normal. That is, Y is an N (m,σ2) random variable if, when
σ = 0, P(Y = m) = 1 and, when σ > 0,

P
(
Y ∈ Γ

)
=
∫

Γ

1
σ
g

(
y −m
σ

)
dy for Γ ∈ BR.

There are two obvious reasons for the honored position held by Gaussian
random variables. In the first place, they certainly have finite moment generating
functions. In fact, since∫

R
eξ y g(y) dy = exp

(
ξ2

2

)
, ξ ∈ R,

it is clear that

(1.3.6) Mγm,σ2 (ξ) = exp
[
ξm+

σ2ξ2

2

]
,

Secondly, they add nicely. To be precise, it is a familiar fact from elemen-
tary probability theory that if X is an N (m,σ2) random variable and X̂ is
an N (m̂, σ̂2) random variable which is independent of X, then X + X̂ is an
N
(
m + m̂, σ2 + σ̂2

)
random variable. In particular, if X1, . . . , Xn are mutually

independent standard normal random variables, then Sn is an N
(
0, 1

n

)
random

variable. That is,

P
(
Sn ∈ Γ

)
=
√

n

2π

∫
Γ

exp
[
−n|y|

2

2

]
dy.

Thus (cf. Exercise 1.3.16 below), for any Γ we see that

(1.3.7) lim
n→∞

1
n

log
[
P
(
Sn ∈ Γ

)]
= −ess inf

{
|y|2

2
: y ∈ Γ

}
.

where the ess in (1.3.7) stands for essential and means that what follows is taken
modulo a set of measure 0. (Hence, apart from a minus sign, the right-hand side
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of (1.3.7) is the greatest number dominated by |y|
2

2 for Lebesgue-almost every
y ∈ Γ.) In fact, because∫ ∞

x

g(y) dy ≤ x−1g(x) for all x ∈ (0,∞),

we have the rather precise upper bound

P
(
|Sn| ≥ ε

)
≤
√

2
nπε2

exp
[
−nε

2

2

]
for ε > 0.

At the same time, it is clear that, for 0 < ε < |a|,

P
(
|Sn − a| < ε

)
≥
√

2εn
π

exp
[
−n(|a|+ ε)2

2

]
.

More generally, if the Xn’s are mutually independent N (m,σ2)-random vari-
ables, then one finds that

P
(
|Sn −m| ≥ σε

)
≤
√

2
nπε2

exp
[
−nε

2

2

]
for ε > 0,

and, for 0 < ε < |a| and sufficiently large n’s

P
(
|Sn − (m+ a)| < σε

)
≥
√

2εn
π

exp
[
−n(|a|+ ε)2

2

]
.

Of course, in general one cannot hope to get such explicit expressions for the
distribution of Sn. Nonetheless, on the basis of the preceding, one can start to
see what is going on. Namely, when the distribution µ falls off rapidly outside of
compacts, averaging n independent random variables with distribution µ has the
effect of building an exponentially deep well in which the mean-value m lies at the
bottom. More precisely, if one believes that the Gaussian random variables are
normal in the sense that they are typical, then one should conjecture that, even
when the random variables are not normal, the behavior of P

(∣∣Sn −m∣∣ ≥ ε) for
large n’s should resemble that of Gaussians with the same variance; and it is in
the verification of this conjecture that the moment generating function Mµ plays
a central rôle. Namely, although an expression in terms of µ for the distribution
of Sn is seldom readily available, the moment generating function for Sn is easily
expressed in terms of Mµ. To wit, as a trivial application of independence, we
have:

EP [eξSn] = Mµ(ξ)n, ξ ∈ R.
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Hence, by Markov’s inequality applied to eξSn , we see that, for any a ∈ R,

P
(
Sn ≥ a

)
≤ e−nξaMµ(ξ)n = exp

[
−n
(
ξa− Λµ(ξ)

)]
, ξ ∈ [0,∞),

where

(1.3.8) Λµ(ξ) ≡ log
(
Mµ(ξ)

)
is the logarithmic moment generating function of µ. The preceding re-
lation is one of those lovely situations in which a single quantity is dominated
by a whole family of quantities, with the result that one should optimize by
minimizing over the dominating quantities. Thus, we now have

(1.3.9) P
(
Sn ≥ a

)
≤ exp

[
−n sup

ξ∈[0,∞)

(
ξa− Λµ(ξ)

)]
.

Notice that (1.3.9) is really very good. For instance, when theXn’s areN (m,σ2)-
random variables and σ > 0, then (cf. (1.3.6)) the preceding leads quickly to the
estimate

P
(
Sn −m ≥ ε

)
≤ exp

(
−nε

2

2σ2

)
,

which is essentially the upper bound at which we arrived before.
Taking a hint from the preceding, we now introduce the Legendre transform

(1.3.10) Iµ(x) ≡ sup
{
ξx− Λµ(ξ) : ξ ∈ R

}
, x ∈ R,

of Λµ and, before proceeding further, make some elementary observations about
the structure of the functions Λµ and Iµ.

Lemma 1.3.11. The function Λµ is infinitely differentiable. In addition, for
each ξ ∈ R, the probability measure νξ on R given by

νξ(Γ) =
1

Mµ(ξ)

∫
Γ

eξx µ(dx) for Γ ∈ BR

has moments of all orders,∫
R
x νξ(dx) = Λ′µ(ξ), and

∫
R
x2 νξ(dx)−

(∫
R
x νξ(dx)

)2

= Λ′′µ(ξ).

Next, the function Iµ is a [0,∞]-valued, lower semicontinuous, convex function
which vanishes at m . Moreover,

Iµ(x) = sup
{
ξx− Λµ(ξ) : ξ ≥ 0

}
for x ∈ [m,∞)

and
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Iµ(x) = sup
{
ξx− Λµ(ξ) : ξ ≤ 0

}
for x ∈ (−∞,m].

Finally, if

α = inf
{
x ∈ R : µ

(
(−∞, x]

)
> 0
}

and

β = sup
{
x ∈ R : µ

(
[x,∞)

)
> 0
}
,

then Iµ is smooth on (α, β) and identically +∞ off of [α, β]. In fact, either
µ({m}) = 1 and α = m = β; or m ∈ (α, β) and Λ′µ is a smooth, strictly
increasing mapping from R onto (α, β),

Iµ(x) = Ξµ(x)x− Λµ
(
Ξµ(x)

)
, x ∈ (α, β), where Ξµ =

(
Λ′µ
)−1

is the inverse of Λ′µ, µ({α}) = e−Iµ(α) if α > −∞, and µ({β}) = e−Iµ(β) if
β <∞.

Proof: For notational convenience, we will drop the subscript “µ” during the
proof. Further, we remark that the smoothness of Λ follows immediately from
the positivity and smoothness of M , and the identification of Λ′(ξ) and Λ′′(ξ)
with the mean and variance of νξ is elementary calculus combined with the
remark following (1.3.4). Thus, we will concentrate on the properties of the
function I.

As the pointwise supremum of functions which are linear, I is certainly lower
semicontinuous and convex. Also, because Λ(0) = 0, it is obvious that I ≥ 0.
Next, by Jensen’s inequality,

Λ(ξ) ≥ ξ
∫

R
xµ(dx) = ξ m,

and, therefore, ξx−Λ(ξ) ≤ 0 if x ≤ m and ξ ≥ 0 or if x ≥ m and ξ ≤ 0. Hence,
because I is nonnegative, this proves the one-sided extremal characterization of
Iµ(x).

Turning to the final part, note first that there is nothing more to do in the
case when µ({m}) = 1. Thus, we will assume that µ({m}) < 1, in which case
it is clear that m ∈ (α, β) and that none of the measures νξ is degenerate.
In particular, because Λ′′(ξ) is the variance of the νξ, we know that Λ′′ > 0
everywhere. Hence, Λ′ is strictly increasing and therefore admits a smooth
inverse Ξ on its image. Furthermore, because Λ′(ξ) is the mean of νξ, it is
clear that the image of Λ′ is contained in (α, β). At the same time, given an
x ∈ [m,β), choose y ∈ (x, β) and note that, for ξ ≥ 0,

Λ(ξ) ≥ ξ y − κ where κ = − log
[
µ
(

[y,∞)
)]
.
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After combining this with the fact (already established) that ξx− Λ(ξ) ≤ 0 for
ξ ≤ 0, we conclude that ξ ∈ R 7−→ ξx − Λ(ξ) achieves its absolute maximum
somewhere in the interval

[
0, κ

y−x

]
and therefore that Λ′(ξ) = x for some ξ in

that interval. Since an analogous argument applies when x ∈ (α,m], we now
know that (α, β) is precisely the image of Λ′. Finally, because (by convexity)
I(x) = ξx−Λ(ξ) if and only if Λ′(ξ) = x, we have also proved that I is given on
(α, β) by the asserted expression.

To complete the proof, suppose that β <∞. Then

eξβµ
(
{β}

)
≤M(ξ), ξ ∈ R.

Thus, on the one hand, we have that µ({β}) ≤ e−I(β). On the other hand,
because

e−I(β) ≤
∫

R
eξ(x−β) µ(dx) for ξ ∈ [0,∞)

and ∫
R
eξ(x−β) µ(dx)↘ µ({β}) as ξ ↗∞,

we also see that µ({β}) ≥ e−I(β). Finally, if x ∈ (β,∞), then I(x) =∞ follows
immediately from Λ(ξ) ≤ ξ β, ξ ∈ [0,∞).

Since the same reasoning applies when α > −∞, we are done. �

Theorem 1.3.12 (Cramér’s Theorem). Let
{
Xn

}∞
1

be a sequence of P-
independent random variables with common distribution µ, assume that the
associated moment generating function Mµ satisfies (1.3.4), set m =

∫
R xµ(dx),

and define Iµ accordingly, as in (1.3.10). Then,

P
(
Sn ≥ a

)
≤ e−nIµ(a) for all a ∈ [m,∞),

P
(
Sn ≤ a

)
≤ e−nIµ(a) for all a ∈ (−∞,m].

Moreover, for a ∈ (α, β) (cf. Lemma 1.3.11), ε > 0, and n ∈ Z+,

P
(∣∣Sn − a∣∣ < ε

)
≥

(
1−

Λ′′µ
(
Ξµ(a)

)
nε2

)
exp
[
−n
(
Iµ(a) + ε|Ξµ(a)|

)]
,

where Λµ is the function given in (1.3.8) and Ξµ ≡
(
Λµ′
)−1

.

Proof: To prove the first part, suppose that a ∈ [m,∞), and apply the second
part of Lemma 1.3.11 to see that the exponent in (1.3.9) equals Iµ(a), and, after
replacing

{
Xn

}∞
1

by
{
−Xn

}∞
1

, also get the desired estimate when a ≤ m.
To prove the lower bound, let a ∈ [m,β) be given, and set ξ = Ξµ(a) ∈

[0,∞). Next, recall the probability measure νξ described in Lemma 1.3.11,
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and remember that νξ has mean a = Λ′µ(ξ) and variance Λ′′µ(ξ). Further, if{
Yn : n ∈ Z+

}
is a sequence of independent, identically distributed random

variables with common distribution νξ, then it is an easy matter to check that,
for any n ∈ Z+ and every BRn -measurable F : Rn −→ [0,∞),

EP
[
F
(
Y1, . . . , Yn

)]
=

1
Mµ(ξ)n

EP
[
eξSn F

(
X1, . . . , Xn

)]
.

In particular, if

Tn =
n∑
`=1

Y` and Tn =
Tn
n
,

then, because Iµ(a) = ξa− Λµ(ξ),

P
(∣∣Sn − a∣∣ < ε

)
= M(ξ)nEP

[
e−ξTn ,

∣∣Tn − a∣∣ < ε
]

≥ e−nξ(a+ε)M(ξ)n P
(∣∣Tn − a∣∣ < ε

)
= exp

[
−n
(
Iµ(a) + ξε

)]
P
(∣∣Tn − a∣∣ < ε

)
.

But, because the mean-value and variance of the Yn’s are, respectively, a and
Λ′′µ(ξ), (1.2.5) leads to

P
(∣∣Tn − a∣∣ ≥ ε) ≤ Λ′′µ(ξ)

nε2
.

The case when a ∈ (α,m] is handled in the same way. �

Results like the ones obtained in Theorem 1.3.12 are examples of a class of
results known as large deviations estimates. They are large deviations be-
cause the probability of their occurrence is exponentially small. Although large
deviation estimates are available in a variety of circumstances,∗ in general one
has to settle for the cruder sort of information contained in the following.

Corollary 1.3.13. For any Γ ∈ BR,

− inf
x∈Γ◦

Iµ(x) ≤ lim
n→∞

1
n

log
[
P
(
Sn ∈ Γ

)]
≤ lim
n→∞

1
n

log
[
P
(
Sn ∈ Γ

)]
≤ − inf

x∈Γ
Iµ(x).

(We use Γ◦ and Γ to denote the interior and closure of a set Γ. Also, recall that
we take the infimum over the empty set to be +∞.)

∗ In fact, see, for example, J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press
Pure Math Series, 137 (1989); some people have written entire books on the subject.
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Proof: To prove the upper bound, let Γ be a closed set and define Γ+ =
Γ ∩ [m,∞) and Γ− = Γ ∩ (−∞,m]. Clearly,

P
(
Sn ∈ Γ

)
≤ 2P

(
Sn ∈ Γ+

)
∨ P

(
Sn ∈ Γ−

)
.

Moreover, if Γ+ 6= ∅ and a+ = min{x : x ∈ Γ+}, then, by Lemma 1.3.11 and
Theorem 1.3.12,

Iµ(a+) = inf
{
Iµ(x) : x ∈ Γ+

}
and P

(
Sn ∈ Γ+

)
≤ e−nIµ(a+).

Similarly, if Γ− 6= ∅ and a− = max{x : x ∈ Γ−}, then

Iµ(a−) = inf
{
Iµ(x) : x ∈ Γ−

}
and P

(
Sn ∈ Γ−

)
≤ e−nIµ(a−).

Hence, either Γ = ∅, and there is nothing to do anyhow, or

P
(
Sn ∈ Γ

)
≤ 2 exp

[
−n inf

{
Iµ(x) : x ∈ Γ

}]
, n ∈ Z+,

which certainly implies the asserted upper bound.
To prove the lower bound, assume that Γ is a nonempty open set. What we

have to show is that

lim
n→∞

1
n

log
[
P
(
Sn ∈ Γ

)]
≥ −Iµ(a)

for every a ∈ Γ. If a ∈ Γ ∩ (α, β), choose δ > 0 so that (a − δ, a + δ) ⊆ Γ and
use the second part of Theorem 1.3.12 to see that

lim
n→∞

1
n

log
[
P
(
Sn ∈ Γ

)]
≥ −Iµ(a)− ε

∣∣Ξµ(a)
∣∣

for every ε ∈ (0, δ). If a /∈ [α, β], then Iµ(a) =∞, and so there is nothing to do.
Finally, if a ∈ {α, β}, then µ({a}) = e−Iµ(a) and therefore

P
(
Sn ∈ Γ

)
≥ P

(
Sn = a

)
≥ e−nIµ(a). �

Remark 1.3.14. The upper bound in Theorem 1.3.12 is often called Cher-
noff’s Inequality. The idea underlying this estimate is rather mundane by
comparison to the subtle one used in the proof of the lower bound. Indeed, it
may not be immediately obvious what that idea was! Thus, consider once again
the second part of the proof of Theorem 1.3.12. What we had to do is estimate
the probability that Sn lies in a neighborhood of a. When a is the mean-value m,
such an estimate is provided by The Weak Law. On the other hand, when a 6= m,
The Weak Law for the Xn’s has very little to contribute. Thus, what we did is
replace the original Xn’s by random variables Yn, n ∈ Z+, whose mean-value is
a. Furthermore, the transformation from the Xn’s to the Yn’s was sufficiently
simple that it was easy to estimate Xn-probabilities in terms of Yn-probabilities.
Finally, The Weak Law applied to the Yn’s gave strong information about the
rate of approach of 1

n

∑n
`=1 Y` to a.



Exercises for § 1.3 31

We close this section by verifying the conjecture (cf. the discussion preceding
Lemma 1.3.11) that the Gaussian case is normal. In particular, we want to check
that the well around m in which the distribution of Sn becomes concentrated
looks Gaussian, and, in view of Theorem 1.3.12, this comes down to the following.

Theorem 1.3.15. Let everything be as in Lemma 1.3.11 and assume that the
variance σ2 > 0. There exists a δ > 0 and a K ∈ (0,∞) such that [m−δ,m+δ] ⊆
(α, β) (cf. Lemma 1.3.11),

∣∣Λ′′µ(Ξ(x)
)∣∣ ≤ K,

∣∣Ξµ(x)
∣∣ ≤ K|x−m|, and

∣∣∣∣Iµ(x)− (x−m)2

2σ2

∣∣∣∣ ≤ K|x−m|3
for all x ∈ [m− δ,m+ δ]. In particular, if 0 < ε < δ, then

P
(
|Sn −m| ≥ ε

)
≤ 2 exp

[
−n
(
ε2

2σ2
−Kε3

)]
,

and if |a−m| < δ and ε > 0, then

P
(
|Sn − a| < ε

)
≥
(

1− K

nε2

)
exp

[
−n
(
|a−m|2

2σ2
+K|a−m|

(
ε+ |a−m|2

))]
.

Proof: Without loss in generality (cf. Exercise 1.3.17 below), we will assume
that m = 0 and σ2 = 1. Since, in this case, Λµ(0) = Λ′µ(0) = 0 and Λ′′µ(0) = 1,
it follows that Ξµ(0) = 0 and Ξ′µ(0) = 1. Hence, we can find an M ∈ (0,∞) and

a α < −δ < δ < β for which
∣∣Ξµ(x) − x

∣∣ ≤ M |x|2 and
∣∣Λµ(ξ) − ξ2

2

∣∣ ≤ M |ξ|3
whenever |x| ≤ δ and |ξ| ≤ (M + 1)δ, respectively. In particular, this leads
immediately to

∣∣Ξµ(x)
∣∣ ≤ (M + 1)|x| for |x| ≤ δ ∧ 1; and the estimate for

Iµ comes easily from the preceding combined with equation Iµ(x) = Ξ(x)x −
Λµ
(
Ξµ(x)

)
. �

Exercises for § 1.3

Exercise 1.3.16. Let
(
E, F , µ

)
be a measurable space and f a nonnegative,

F-measurable function. If either µ(E) <∞ or f is µ-integrable, show that

‖f‖Lp(µ) −→ ‖f‖L∞(µ) as p→∞.

Hint: Handle the case µ(E) <∞ first, and handle the case when f ∈ L1(µ) by
considering the measure ν(dx) = f(x)µ(dx).

Exercise 1.3.17. Referring to the notation used in this section, assume that
µ is a nondegenerate (i.e., it is not concentrated at a single point) probability
measure on R for which (1.3.4) holds. Next, let m and σ2 be the mean and
variance of µ, use ν to denote the distribution of

x ∈ R 7−→ x−m
σ

∈ R under µ,
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and define Λν , Iν , and Ξν accordingly. Show that

Λµ(ξ) = ξm+ Λν(σξ), ξ ∈ R,

Iµ(x) = Iν

(
x−m
σ

)
, x ∈ R,

Image
(
Λ′µ
)

= m+ σ Image
(
Λ′ν
)
,

Ξµ(x) =
1
σ

Ξν

(
x−m
σ

)
, x ∈ Image

(
Λ′µ
)
.

Exercise 1.3.18. Continue with the same notation.
(i) Show that Iν ≤ Iµ if Mµ ≤Mν .

(ii) Show that

Iµ(x) =
(x−m)2

2σ2
, x ∈ R,

when µ is the N
(
m,σ2

)
distribution and show that

Iµ(x) =
x− a
b− a

log
x− a

(1− p)(b− a)
+
b− x
b− a

log
b− x
p(b− a)

, x ∈ (a, b),

when a < b, p ∈ (0, 1), and µ({a}) = 1− µ({b}) = p.

(iii) When µ is the centered Bernoulli distribution given by µ
(
{±1}

)
= 1

2 ,

show that Mµ(ξ) ≤ exp
[
ξ2

2

]
, ξ ∈ R, and conclude that Iµ(x) ≥ x2

2 , x ∈ R.

More generally, given n ∈ Z+,
{
σk
}n

1
⊆ R, and independent random variables

X1, . . . , Xn with this µ as their common distribution, let ν denote the distri-
bution of S ≡

∑n
1 σkXk and show that Iν(x) ≥ x2

2Σ2 , where Σ2 ≡
∑n

1 σ
2
k. In

particular, conclude that

P
(
|S| ≥ a

)
≤ 2 exp

[
− a2

2Σ2

]
, a ∈ [0,∞).

Exercise 1.3.19. Although it is not exactly the direction in which we have been
going, it seems appropriate to include here a derivation of Stirling’s formula.
Namely, recall Euler’s Gamma function

(1.3.20) Γ(t) ≡
∫

[0,∞)

xt−1e−x dx, t ∈ (−1,∞).

What we want to prove is that

(1.3.21) Γ(t+ 1) ∼
√

2πt
(
t

e

)t
as t↗∞,
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where the tilde “∼” means that the two sides are asymptotic to one another in
the sense that their ratio tends to 1. (See Exercise 2.1.39 for another approach.)

The first step is to make the problem look like one to which Exercise 1.3.16 is
applicable. Thus, make the substitution x = ty and apply Exercise 1.3.16 to see
that (

Γ(t+ 1)
tt+1

) 1
t

=

(∫
[0,∞)

yt e−ty dy

) 1
t

−→ e−1.

This is, of course, far less than we need to know. However, it does show that all
the action is going to take place near y = 1 and that the principal factor in the
asymptotics of Γ(t+1)

tt+1 is e−t. In order to highlight these observations, make the
substitution y = z + 1 and obtain

Γ(t+ 1)
tt+1e−t

=
∫

(−1,∞)

(1 + z)t e−tz dz.

Before taking the next step, introduce the function R(z) = log(1 + z)− z+ z2

2

for z ∈ (−1, 1), and check that R(z) ≤ 0 if z ≤ 0 and that |R(z)| ≤ |z|3
3(1−|z| . Now

let δ ∈ (0, 1) be given, and show that∫ −δ
−1

(
1 + z

)t
e−tz dz ≤ (1− δ)

[
(1− δ)e−δ

]
≤ exp

[
− tδ

2

2

]
,

and ∫ ∞
δ

(
1 + z

)t
e−tz dz ≤

[(
1 + δ

)
e−δ
]t−1

∫ ∞
δ

(1 + z)e−z dz

≤ exp
[
1− tδ2

2
+

δ3

3(1− δ)

]
.

Next, write (1 + z)te−tz = e−
tz2
2 etR(z). Then∫

|z|≤δ

(
1 + z

)t
e−tz dz =

∫
|z|≤δ

e−
tz2
2 dz + E(t, δ),

where
E(t, δ) =

∫
|z|≤δ

e−
tz2
2
(
etR(z) − 1

)
dz.

Check that∣∣∣∣∣
∫
|z|≤δ

e−
tz2
2 dz −

√
2π
t

∣∣∣∣∣ = t−
1
2

∫
|z|≥t

1
2 δ

e−
z2
2 dz ≤ 2

t
1
2 δ
e−

tδ2
2 .
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At the same time, show that

|E(t, δ)| ≤ t
∫
|z|≤δ

|R(z)|e− tz
2

2 +|R(z)| dz ≤ t
∫
|z|≤δ

|z|3e−
tz2
2

3−5δ
3(1−δ) dz ≤ 12(1− δ)

(3− 5δ)2t

as long as δ < 3
5 . Finally, take δ =

√
2t−1 log t, combine these to conclude that

there there is a C <∞ such that∣∣∣∣∣ Γ(t+ 1)
√

2πt
(
t
e

)t − 1

∣∣∣∣∣ ≤ C

t
, t ∈ [1,∞).

Exercise 1.3.22. Here is a rather different sort of application of large deviation
estimates. Namely, inspired by T.H. Carne,∗ we will show that for each n ∈ Z+

and 1 ≤ m < n there exists an (m−1)st order polynomial pm,n with the property
that ∣∣xn − pm,n(x)

∣∣ ≤ 2 exp
[
−m

2

2n

]
for x ∈ [−1, 1].

(i) Given a C-valued f on Z, define ∆f : Z −→ C by

Af(n) =
f(n+ 1) + f(n− 1)

2
, n ∈ Z,

and show that, for any n ≥ 1, Anf = EP[f(Sn)
]
, where Sn is the sum of n

P-independent, Bernoulli random variables.

(ii) Show that, for each z ∈ C, there is a unique sequence {Q(m, z) : m ∈ Z} ⊆ C
satisfying Q(0, z) = 1,

Q(−m, z) = Q(m, z), and
[
AQ( · , z)

]
(m) = zQ(m, z) for all m ∈ Z.

In fact, show that, for each m ∈ Z+: Q(m, · ) is a polynomial of degree m and

Q(m, cos θ) = cos(mθ), θ ∈ C.

In particular, this means that |Q(n, x)| ≤ 1 for all x ∈ [−1, 1]. (It also means
that Q(n, · ) is the nth Chebychev polynomial.)

∗ T.H. Carne, “A transformation formula for Markov chains,” Bull. Sc. Math., 109: 399–405
(1985). As Carne points out, what he is doing is the discrete analog of Hadamard’s represen-

tation, via the Weierstrass transform, of solutions to heat equations in terms of solutions to
the wave equations.
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(iii) Using induction on n ∈ Z+, show that[
AnQ( · , z)

]
(m) = znQ(m, z), m ∈ Z and z ∈ C,

and conclude that

zn = E
[
Q
(
Sn, z

)]
, n ∈ Z+ and z ∈ C,

where Sn is the sum of n mutually independent, standard, {−1, 1}-valued Ber-
noulli random variables. In particular, if

pm,n(z) ≡ E
[
Q
(
Sn, z),

∣∣Sn∣∣ < m
]

= 2−n
∑

|2`−n|<m

(
n

`

)
Q(2`− n, z),

conclude that (cf. Exercise 1.3.18)

sup
x∈[−1,1]

|xn − pm,n(x)| ≤ P
(
|Sn| ≥ m

)
≤ 2 exp

[
−m

2

2n

]
for all 1 ≤ m ≤ n.

(iv) Suppose that A is a self-adjoint contraction on the Hilbert space H (i.e.,
(f,Ag)H = (g,Af)H and ‖Af‖H ≤ ‖f‖H for all f, g ∈ H). Next, assume that(
f,A`g

)
H

= 0 for some f, g ∈ H and each 0 ≤ ` < m. Show that

∣∣(f,Ang)
H

∣∣ ≤ 2‖f‖H‖g‖H exp
[
−m

2

2n

]
for n ≥ m.

(See Exercise 2.2.27 for an application.)

Hint: Note that
(
f, pm,n(A)g

)
H

= 0, and use the Spectral Theorem to see that,
for any polynomial p,

‖p(A)f‖H ≤ sup
x∈[−1,1]

|p(x)| ‖f‖H , f ∈ H.

§1.4 The Strong Law of Large Numbers
In this section we will discuss a few almost sure convergence properties of partial
sums of independent random variables. Thus, once again,

{
Xn

}∞
1

will be a
sequence of independent random variables on a probability space

(
Ω,F , P

)
, and

Sn and Sn will be, respectively, the sum and average of X1, . . . , Xn. Throughout
this section, the reader should notice how much more immediately important a
rôle independence (as opposed to orthogonality) plays than it did in Section 1.2.

To get started, we point out that, for both
{
Sn
}∞

1
and

{
Sn
}∞

1
, the set on

which convergence occurs has P-measure either 0 or 1. In fact, we have the
following simple application of Kolmogorov’s 0–1 Law (Theorem 1.1.2).
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Lemma 1.4.1. For any sequence
{
an : n ∈ Z+

}
⊆ R and any sequence{

bn : n ∈ Z+
}
⊆ (0,∞) which converges to an element of (0,∞], the set on

which

lim
n→∞

Sn − an
bn

exists in R

has P-measure either 0 or 1. In fact, if bn −→∞ as n→∞, then both

lim
n→∞

Sn − an
bn

and lim
n→∞

Sn − an
bn

are P-almost surely constant.

Proof: Simply observe that all of the events and functions involved can be
expressed in terms of {Sm+n − Sm}∞n=1 for each m ∈ Z+ and are therefore
tail-measurable. �

Our basic result about the almost sure convergence properties of both
{
Sn
}∞

1

and
{
Sn
}∞

1
is the following beautiful statement, which was proved originally by

Kolmogorov.

Theorem 1.4.2. If the Xn’s are independent, square P-integrable random
variables and if

(1.4.3)
∞∑
n=1

var
(
Xn) <∞,

then
∞∑
n=1

(
Xn − EP[Xn

])
converges P-almost surely.

Note that, since

(1.4.4) sup
n≥N

P

(∣∣∣∣∣
n∑

`=N

(
X` − EP[X`

])∣∣∣∣∣ ≥ ε
)
≤ 1
ε2

∞∑
`=N

var
(
X`

)
,

(1.4.4) certainly implies that the series
∑∞
n=1

(
Xn − EP[Xn

])
converges in P-

measure. Thus, all that we are trying to do here is replace a convergence in
measure statement with an almost sure one. Obviously, this replacement would
be trivial if the “supn≥N” in (1.4.4) appeared on the other side of P. The
remarkable fact which we are about to prove is that, in the present situation,
the “supn≥N” can be brought inside!

Theorem 1.4.5 ((Kolmogorov’s Inequality). If the Xn’s are independent
and square P-integrable, then

(1.4.6) P

(
sup
n≥1

∣∣∣∣∣
n∑
`=1

(
X` − EP[X`

])∣∣∣∣∣ ≥ ε
)
≤ 1
ε2

∞∑
n=1

var
(
Xn

)
for each ε > 0.
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Proof: Without loss in generality, assume that each Xn has mean-value 0.
Given 1 ≤ n < N , note that

S2
N − S2

n =
(
SN − Sn

)2 + 2
(
SN − Sn

)
Sn ≥ 2

(
SN − Sn

)
Sn;

and therefore, since SN−Sn has mean-value 0 and is independent of the σ-algebra
σ
(
X1, . . . , Xn

)
,

(*) EP[S2
N , An

]
≥ EP[S2

n, An
]

for any An ∈ σ
(
X1, . . . , Xn

)
.

In particular, if A1 =
{
|S1| > ε

}
and

An+1 =
{∣∣Sn+1

∣∣ > ε and max
1≤`≤n

∣∣S`∣∣ ≤ ε}, n ∈ Z+,

then, the An’s are mutually disjoint,

BN ≡
{

max
1≤n≤N

∣∣Sn∣∣ > ε

}
=

N⋃
n=1

An,

and so (*) implies that

EP[S2
N , BN

]
=

N∑
n=1

EP[S2
N , An

]
≥

N∑
n=1

EP[S2
n, An

]
≥ ε2

N∑
n=1

P
(
An
)

= ε2P
(
BN
)
.

In particular,

ε2P

(
sup
n≥1

∣∣Sn∣∣ > ε

)
= lim
N→∞

ε2P
(
BN
)

≤ lim
N→∞

EP[S2
N

]
≤
∞∑
n=1

EP[X2
n

]
,

and so the result follows after one takes left limits with respect to ε > 0. �
Proof of 1.4.2: Again we assume that the Xn’s have mean-value 0. By (1.4.6)
applied to

{
XN+n : n ∈ Z+

}
, we see that (1.4.4) implies

P
(

sup
n>N

∣∣Sn − SN ∣∣ ≥ ε) ≤ 1
ε2

∞∑
n=N+1

EP[X2
n

]
−→ 0 as N →∞

for every ε > 0; and this is equivalent to the P-almost sure Cauchy convergence
of
{
Sn
}∞

1
. �

In order to convert the conclusion in Theorem 1.4.2 into a statement about{
Sn
}∞

1
, we will need the following elementary summability fact about sequences

of real numbers.
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Lemma 1.4.7 (Kronecker). Let
{
bn : n ∈ Z+

}
be a nondecreasing sequence

of positive numbers which tends to ∞, and set βn = bn − bn−1, where b0 ≡ 0. If{
sn
}∞

1
⊆ R is a sequence which converges to s ∈ R, then

1
bn

n∑
`=1

β`s` −→ s.

In particular, if
{
xn
}∞

1
⊆ R, then

∞∑
n=1

xn
bn

converges in R =⇒ 1
bn

n∑
`=1

x` −→ 0 as n→∞.

Proof: To prove the first part, assume that s = 0, and for given ε > 0 choose
N ∈ Z+ so that |s`| < ε for ` ≥ N . Then, with M = supn≥1 |sn|,∣∣∣∣∣ 1

bn

n∑
`=1

β`s`

∣∣∣∣∣ ≤ MbN
bn

+ ε −→ ε

as n→∞.
Turning to the second part, set y` = x`

b`
, s0 = 0, and sn =

∑n
`=1 y`. After

summation by parts,

1
bn

n∑
`=1

x` = sn −
1
bn

n∑
`=1

β`s`−1;

and so, since sn −→ s ∈ R as n → ∞, the first part gives the desired conclu-
sion. �

After combining Theorem 1.4.2 with Lemma 1.4.7, we arrive at the following
interesting statement.

Corollary 1.4.8. Assume that
{
bn
}∞

1
⊆ (0,∞) increases to infinity as n→

∞, and suppose that
{
Xn

}∞
1

is a sequence of independent, square P-integrable
random variables. If

∞∑
n=1

var
(
Xn

)
b2n

<∞,

then
1
bn

n∑
`=1

(
X` − EP[X`

])
−→ 0 P -almost surely.

As an immediate consequence of the preceding, we see that Sn −→ m P-almost
surely if the Xn’s are identically distributed and square P-integrable. In fact,
without very much additional effort, we can also prove the following much more
significant refinement of the last part of Theorem 1.3.1.
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Theorem 1.4.9 (Kolmogorov’s Strong Law). Let
{
Xn : n ∈ Z+

}
be a

sequence of P-independent, identically distributed random variables. If X1 is
P-integrable and has mean-value m, then, as n→∞, Sn −→ m P-almost surely
and in L1(P ). Conversely, if Sn converges (in R) on a set of positive P-measure,
then X1 is P-integrable.

Proof: Assume that X1 is P-integrable and that EP[X1

]
= 0. Next, set Yn =

Xn1[0,n]

(
|Xn|

)
, and note that

∞∑
n=1

P
(
Yn 6= Xn

)
=
∞∑
n=1

P
(
|Xn| > n

)
≤
∞∑
n=1

∫ n

n−1

P
(
|X1| > t

)
dt = EP[|X1|

]
<∞.

Thus, by the first part of the Borel–Cantelli Lemma,

P
((
∃n ∈ Z+

)(
∀N ≥ n

)
YN = XN

)
= 1.

In particular, if Tn = 1
n

∑n
`=1 Y` for n ∈ Z+, then, for P-almost every ω ∈ Ω,

Tn(ω) −→ 0 if and only if Sn(ω) −→ 0. Finally, to see that Tn −→ 0 P-almost
surely, first observe that, because EP[X1] = 0, by the first part of Lemma 1.4.7,

lim
n→∞

1
n

n∑
`=1

EP[Y`] = lim
n→∞

EP
[
X1,

∣∣X1

∣∣ ≤ n] = 0,

and therefore, by Corollary 1.4.8, it suffices for us to check that
∞∑
n=1

EP[Y 2
n

]
n2

<∞.

To this end, set

C = sup
`∈Z+

`

∞∑
n=`

1
n2
,

and note that
∞∑
n=1

EP[Y 2
n

]
n2

=
∞∑
n=1

1
n2

n∑
`=1

EP
[
X2

1 , `− 1 <
∣∣X1

∣∣ ≤ `]

=
∞∑
`=1

EP
[
X2

1 , `− 1 <
∣∣X1

∣∣ ≤ `] ∞∑
n=`

1
n2

≤ C
∞∑
`=1

1
`
EP
[
X2

1 , `− 1 <
∣∣X1

∣∣ ≤ `] ≤ C EP[|X1|
]
<∞.
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Thus, the P-almost sure convergence is now established, and the L1(P )-conver-
gence result was proved already in Theorem 1.2.7.

Turning to the converse assertion, first note that (by Lemma 1.4.1) if Sn
converges in R on a set of positive P-measure, then it converges P-almost surely
to some m ∈ R. In particular,

lim
n→∞

|Xn|
n

= lim
n→∞

∣∣Sn − Sn−1

∣∣ = 0 P -almost surely;

and so, if An ≡
{
|Xn| > n

}
, then P

(
limn→∞An

)
= 0. But the An’s are mutually

independent; and therefore, by the second part of the Borel–Cantelli Lemma,
we now know that

∑∞
n=1 P

(
An
)
<∞. Hence,

EP[|X1|
]

=
∫ ∞

0

P
(
|X1| > t

)
dt ≤ 1 +

∞∑
n=1

P
(
|Xn| > n

)
<∞. �

Remark 1.4.10. A reason for being interested in the converse part of Theorem
1.4.9 is that it provides a reconciliation between the measure theory vs. frequency
schools of probability theory.

Although Theorem 1.4.9 is the centerpiece of this section, we still want to
give another approach to the study of the almost sure convergence properties of{
Sn
}∞

1
. In fact, following P. Lévy, we are going to show that

{
Sn
}∞

1
converges

P-almost surely if it converges in P-measure. Hence, for example, Theorem 1.4.2
can be proved as a direct consequence of (1.4.4), without appeal to Kolmogorov’s
Inequality.

The key to Lévy’s analysis lies in a version of the reflection principle, whose
statement requires the introduction of a new concept. Given an R-valued random
variable Y , we say that α ∈ R is a median of Y and write α ∈med(Y ), if

(1.4.11) P
(
Y ≤ α

)
∧ P

(
Y ≥ α

)
≥ 1

2
.

Notice that (as distinguished from a mean-value) every Y admits a median; for
example, it is easy to check that

α ≡ inf
{
t ∈ R : P

(
Y ≤ t

)
≥ 1

2

}
is a median of Y . In addition, it is clear that

med (β + Y ) = β + med (Y ) for all β ∈ R.

On the other hand, the notion of median is flawed by the fact that, in general,
a random variable will admit an entire nondegenerate interval of medians. In
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addition, it is neither easy to compute the medians of a sum in terms of the
medians of the summands nor to relate the medians of an integrable random
variable to its mean-value. Nonetheless, at least if Y ∈ Lp(P ) for some p ∈
[1,∞), the following estimate provides some information. Namely, since, for
α ∈ med(Y ) and β ∈ R,

|α− β|p

2
≤ |α− β|pP

(
Y ≥ α

)
∧ P

(
Y ≤ α

)
≤ EP[|Y − β|p],

we see that, for any p ∈ [1,∞) and Y ∈ Lp(P ),

|α− β| ≤
(

2EP[|Y − β|p]) 1
p

for all β ∈ R and α ∈ med (Y ).

In particular, if Y ∈ L2(P ) and m is the mean-value of Y , then

(1.4.12) |α−m| ≤
√

2var(Y ).

Theorem 1.4.13 (Lévy’s Reflection Principle). Let
{
Xn : n ∈ Z+

}
be

a sequence of P-independent random variables, and, for k ≤ `, choose α`,k ∈
med

(
S` − Sk

)
. Then, for any N ∈ Z+ and ε > 0,

(1.4.14) P
(

max
1≤n≤N

(
Sn + αN,n

)
≥ ε
)
≤ 2P

(
SN ≥ ε

)
;

and therefore

P
(

max
1≤n≤N

∣∣Sn + αN,n
∣∣ ≥ ε) ≤ 2P

(
|SN | ≥ ε

)
.

Proof: Clearly 1.4.13 follows by applying (1.4.14) to both the sequences
{
Xn

}∞
1

and
{
−Xn

}∞
1

and then adding the two results.

To prove (1.4.14), set A1 =
{
S1 + αN,1 ≥ ε

}
and

An+1 =
{

max
1≤`≤n

(
S` + αN,`

)
< ε and Sn+1 + αN,n+1 ≥ ε

}
for 1 ≤ n < N . Obviously, the An’s are mutually disjoint and

N⋃
n=1

An =
{

max
1≤n≤N

(
Sn + αN,n

)
≥ ε
}
.

In addition,

{SN ≥ ε
}
⊇ An ∩

{
SN − Sn ≥ αN,n

}
for each 1 ≤ n ≤ N.
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Hence,

P
(
SN ≥ ε

)
≥

N∑
n=1

P
(
An ∩

{
SN − Sn ≥ αN,n

})
≥ 1

2

N∑
n=1

P
(
An
)

=
1
2
P

(
max

1≤n≤N

(
Sn + αN,n

)
≥ ε
)
,

where, in the passage to the last line, we have used the independence of the sets
An and

{
SN − Sn ≥ αN,n

}
. �

Corollary 1.4.15. Let
{
Xn : n ∈ Z+

}
be a sequence of independent random

variables, and assume that
{
Sn : n ∈ Z+

}
converges in P-measure to an R-

valued random variable S. Then Sn −→ S P-almost surely. (Cf. Exercise 1.4.24
as well.)

Proof: What we must show is that, for each ε > 0, there is an M ∈ Z+ such
that

sup
N≥1

P
(

max
1≤n≤N

∣∣Sn+M − SM
∣∣ ≥ ε) < ε.

To this end, let 0 < ε < 1 be given, and choose M ∈ Z+ so that

P
(∣∣Sn+M − Sk+M

∣∣ ≥ ε

2

)
<
ε

2
for all 1 ≤ k < n.

Next, for a given N ∈ Z+, choose αN,n ∈ med
(
SM+N − SM+n

)
for 0 ≤ n ≤ N .

Then |αN,n| ≤ ε
2 , and so, by 1.4.13 applied to {XM+n}∞n=1,

P

(
max

1≤n≤N

∣∣SM+n − SM
∣∣ ≥ ε) ≤ P ( max

1≤n≤N

∣∣SM+n − SM + αN,n
∣∣ ≥ ε

2

)
≤ 2P

(∣∣SM+N − SM
∣∣ ≥ ε

2

)
< ε. �

Remark 1.4.16. The most beautiful and startling feature of Lévy’s line of
reasoning is that it requires no integrability assumptions. Of course, in many
applications of Corollary 1.4.15, integrability considerations enter into the proof
that

{
Sn
}∞

1
converges in P-measure. Finally, a word of caution may be in order.

Namely, the result in Corollary 1.4.15 applies to the quantities Sn themselves; it
does not apply to associated quantities like Sn! Indeed, suppose that {Xn}∞1 is a
sequence of independent random variables with common distribution satisfying

P
(
Xn ≤ −t

)
= P

(
Xn ≥ t

)
=
((

1 + t2
)

log
(
e4 + t2

))− 1
2

for all t ≥ 0.

On the one hand, by Exercise 1.2.12, we know that the associated averages Sn
tend to 0 in probability. On the other hand, by the second part of Theorem
1.4.9, we know that the sequence

{
Sn
}∞

1
diverges almost surely.
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Exercises for § 1.4

Exercise 1.4.17. Let X and Y be nonnegative random variables, and suppose
that

(1.4.18) P
(
X ≥ t

)
≤ 1
t

EP
[
Y, X ≥ t

]
, t ∈ (0,∞).

Show that

(1.4.19)
(
EP[Xp

]) 1
p ≤ p

p− 1

(
EP[Y p]) 1

p

, p ∈ (1,∞).

Hint: First, reduce to the case when X is bounded. Next, recall that, for any
measure space

(
E,F , µ

)
, any nonnegative, measurable f on

(
E,F

)
, and any

α ∈ (0,∞), ∫
E

f(x)α µ(dx) = α

∫
(0,∞)

tα−1 µ
(
f > t

)
dt.

Use this together with (1.4.18) to justify the relation

EP[Xp
]
≤ p

∫
(0,∞)

tp−2 EP
[
Y, X ≥ t

]
= pEP

[
X

∫ X

0

tp−2 dt

]
=

p

p− 1
EP
[
Xp−1 Y

]
;

and arrive at (1.4.19) after an application of Hölder’s inequality.

Exercise 1.4.20. Let
{
Xn

}∞
1

be a sequence of mutually independent, square
P-integrable random variables with mean value 0, and assume that

∑∞
1 E

[
X2
n

]
<

∞. Let S denote the random variable (guaranteed by Theorem 1.4.2) to which{
Sn
}∞

1
converges P-almost surely, and, using elementary orthogonality consid-

erations, check that Sn −→ S in L2(P ) as well. Next, after examining the proof
of Kolmogorov’s inequality (cf. (1.4.6)), show that

P
(

sup
n∈Z+

∣∣Sn∣∣2 ≥ t) ≤ 1
t
EP
[
S2, sup

n∈Z+

∣∣Sn∣∣2 ≥ t] , t > 0.

Finally, by applying (1.4.19), show that

(1.4.21) EP
[

sup
n∈Z+

∣∣Sn∣∣2p] ≤ ( p
p−1

)p
EP
[∣∣S∣∣2p], p ∈ (1,∞);

and conclude from this that, for each p ∈ (2,∞),
{
Sn
}∞

1
converges to S in Lp(P )

if and only if S ∈ Lp(P ).
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Exercise 1.4.22. If X ∈ L2(P ), then it is easy to characterize its mean m as
the c ∈ R which minimizes EP[(X − c)2

]
. Assuming that X ∈ L1(P ), show that

α ∈ med(X) if and only if

EP[|X − α|] = min
c∈R

EP[|X − c|].
Hint: Show that, for any a, b ∈ R,

EP[|X − b|]− EP[|X − a|] =
∫ b

a

[
P (X ≤ t)− P (X ≥ t)

]
dt.

Exercise 1.4.23. Let {Xn : n ≥ 1} be a sequence of random variables which
converges in probability to the random variableX, and assume that supn≥1 var(Xn) <
∞. Show that X is square integrable and that EP[|Xn−X|

]
−→ 0. In particular,

if, in addition, var(Xn) −→ var(X), the EP[|Xn −X|2
]
−→ 0.

Hint: Let αn ∈ med(Xn), and show that α+ = limn→∞ αn and α− = limn→∞ αn
are both elements of med(X). Combine this with (1.4.12) to conclude that
supn≥1

∣∣EP[Xn]
∣∣ <∞ and therefore that supn≥1 EP[X2] <∞.

Exercise 1.4.24. The following variant of Theorem 1.4.13 is sometimes useful
and has the advantage that it avoids the introduction of medians. Namely show
that for any t ∈ (0,∞) and n ∈ Z+:

P
(

max
1≤m≤n

|Sn| ≥ 2t
)
≤

P
(
|Sn| > t

)
1− max

1≤m≤n
P
(
|Sn − Sm| > t

) .
Note that this can be used in place of 1.4.13 when proving results like the one
in Corollary 1.4.15.

Exercise 1.4.25. A random variable X is said to by symmetric if −X has
the same distribution as X itself. Obviously, the most natural choice of median
for a symmetric random variable is 0; and thus, because sums of independent,
symmetric random variables are again symmetric, (1.4.14) and 1.4.13 are par-
ticularly interesting when the Xn’s are symmetric, since the α`,k’s can then be
taken to be 0. In this connection, we present the following interesting variation
on the theme of Theorem 1.4.13.

(i) Let X1, . . . , Xn, . . . be independent, symmetric random variables, set Mn(ω)
= max1≤`≤n |X`(ω)|, let τn(ω) be the smallest 1 ≤ ` ≤ n with the property that∣∣X`(ω)

∣∣ = Mn(ω), and define

Yn(ω) = Xτn(ω)(ω) and Ŝn = Sn − Yn.
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Show that

ω ∈ Ω 7−→
(
Ŝn(ω), Yn(ω)

)
∈ R2 and ω ∈ Ω 7−→

(
−Ŝn(ω), Yn(ω)

)
∈ R2

have the same distribution, and conclude first that

P
(
Yn ≥ t

)
≤ P

(
Yn ≥ t & Ŝn ≥ 0

)
+ P

(
Yn ≥ t & Ŝn ≤ 0

)
= 2P

(
Yn ≥ t & Ŝn ≥ 0

)
≤ 2P

(
Sn ≥ t

)
,

for all t ∈ R; and then that

P
(

max
1≤`≤n

∣∣X`

∣∣ ≥ t) ≤ 2P
(∣∣Sn∣∣ ≥ t), t ∈ [0,∞).

(ii) Continuing in the same setting, add the assumption that the Xn’s are iden-
tically distributed, and use part (ii) to show that

lim
n→∞

P
(∣∣Sn∣∣ ≤ C) = 1 for some C ∈ (0,∞)

=⇒ lim
n→∞

nP
(∣∣X1

∣∣ ≥ n) = 0.

Hint: Note that
P
(

max
1≤`≤n

|X`| ≥ t
)

= 1− P(|X1 ≥ t)n

and that 1−(1−x)n

x −→ n as x↘ 0.

In conjunction with Exercise 1.2.12, this proves that if
{
Xn

}∞
1

is a sequence of
independent, identically distributed symmetric random variables, then Sn −→ 0
in P-probability if and only if limn→∞ nP

(
|X1| ≥ n

)
= 0.

Exercise 1.4.26. Let X1, . . . , Xn, . . . be a sequence of mutually independent,
identically distributed, P-integrable random variables with mean-value m. As
we already know, when m > 0, the partial sums Sn tend, P-almost surely, to
+∞ at an asymptotic linear rate m; and, of course, when m < 0 the situation
is similar at −∞. Moreover, when m = 0, we know that, if |Sn| tends to ∞ at
all, then, P-almost surely, it does so at a strictly sublinear rate. In this exercise,
we will sharpen this statement by proving that

m = 0 =⇒ lim
n→∞

|Sn| <∞ P -almost surely.

The beautiful argument given below is due to Y. Guivarc’h, but it’s full power
cannot be appreciated in the present context (cf. Exercise (6.2.3?)). Indeed, a
classic result (cf. Exercise (5.2.11?) below) due to K.L. Chung and W.H. Fuchs
shows that limn→∞ |Sn| = 0 P-almost surely.

In order to prove the assertion here, assume that limn→∞ |Sn| = ∞ with
positive P-probability, use Kolmogorov’s 0–1 Law to see that |Sn| −→ ∞ P-
almost surely, and proceed as follows.
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(i) Show that there must exist an ε > 0 with the property that

P
(
∀` > k

∣∣S` − Sk∣∣ ≥ ε) ≥ ε
for some k ∈ Z+ and therefore that

P(A) ≥ ε where A ≡
{
ω : ∀` ∈ Z+

∣∣S`(ω)
∣∣ ≥ ε}.

(ii) For each ω ∈ Ω and n ∈ Z+, set

Γn(ω) =
{
t ∈ R : ∃1 ≤ ` ≤ n

∣∣t− S`(ω)
∣∣ < ε

2

}
and

Γ′n(ω) =
{
t ∈ R : ∃1 ≤ ` ≤ n

∣∣t− S′`(ω)
∣∣ < ε

2

}
,

where S′n ≡
∑n
`=1X`+1. Next, let Rn(ω) and R′n(ω) denote the Lebesgue mea-

sure of Γn(ω) and Γ′n(ω), respectively; and, using the translation invariance of
Lebesgue’s measure, show that

Rn+1(ω)−R′n(ω) ≥ ε1A′(ω),

where A′ ≡
{
ω : ∀` ≥ 2

∣∣S`(ω)− S1(ω)
∣∣ ≥ ε}.

On the other hand, show that

EP[R′n] = EP[Rn] and P (A′) = P (A);

and conclude first that

εP (A) ≤ EP[Rn+1 −Rn
]
, n ∈ Z+,

and then that
εP (A) ≤ lim

n→∞

1
n

EP[Rn].
(iii) In view of parts (i) and (ii), we will be done once we show that

m = 0 =⇒ lim
n→∞

1
n

EP[Rn] = 0.

But clearly, 0 ≤ Rn(ω) ≤ nε. Thus, it is enough for us to show that, when
m = 0, Rnn −→ 0 P-almost surely; and, to this end, first check that

Sn(ω)
n
−→ 0 =⇒ Rn(ω)

n
−→ 0,

and, finally, apply The Strong Law of Large Numbers.
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Exercise 1.4.27. As we have already said, for many applications the Weak
Law of Large Numbers is just as good as and even preferable to the Strong
Law. Nonetheless, here is an application in which the full strength of Strong
Law plays an essential role. Namely, we are going to use the Strong Law to
produce examples of continuous, strictly increasing functions F on [0, 1] with
the property that their derivative

F ′(t) ≡ lim
y→x

F (y)− F (x)
y − x

= 0 at Lebesgue almost every x ∈ (0, 1).

By familiar facts about functions of a real variable, one knows that such func-
tions F are in one-to-one correspondence with non-atomic, Borel probability
measures µ on [0, 1] which charge every non-empty open subset but are singular
to Lebesgue’s measure. Namely, F is the distribution function determined by µ:
F (x) = µ

(
(−∞, x]

)
.

(i) Set Ω = {0, 1}Z+
, and, for each p ∈ (0, 1), take Mp = (βp)Z+

where βp on
{0, 1} is the Bernoulli measure with βp({1}) = p = 1− βp({0}). Next, define

ω ∈ Ω 7−→ Y (ω) ≡
∞∑
n=1

2−nωn ∈ [0, 1],

and let µp denote the Mp-distribution of Y . Given n ∈ Z+ and 0 ≤ m < 2n,
show that

µp
([
m2−n, (m+ 1)2−n

])
= p`m,n(1− p)n−`m,n ,

where `m,n =
∑n
k=1 ωk and (ω1, . . . , ωn) ∈ {0, 1}n is determined by m2−n =∑n

k=1 2−kωk. Conclude, in particular, that µp is non-atomic and charges every
non-empty open subset of [0, 1].

(iii) Given x ∈ [0, 1) and n ∈ Z+, define

εn(x) =
{

1 if 2n−1x− [2n−1x] ≥ 1
2

0 if 2n−1x− [2n−1x] < 1
2 ,

where [s] denotes the integer part of s. If {εn : n ≥ 1} ⊆ {0, 1} satisfies
x =

∑∞
1 2−mεm show that εm = εm(x) for all m ≥ 1 if and only if εm = 0 for

infinitely many m ≥ 1. In particular, conclude first that ωn = εn
(
Y (ω)

)
, n ∈

Z+, for Mp-almost every ω ∈ Ω and second, by the Strong Law, that

1
n

n∑
m=1

εn(x) −→ p for µp-almost every x ∈ [0, 1].

Thus, µp1 ⊥ µp2 whenever p1 6= p2.
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(iv) By Lemma 1.1.6, we know that µ 1
2

is Lebesgue measure λ[0,1] on [0, 1].
Hence, we now know that µp ⊥ λ[0,1] when p 6= 1

2 . In view of the introductory
remarks, this completes the proof that, for each p ∈ (0, 1) \ { 1

2}, the function
Fp(x) = µp

(
(−∞, x]

)
is a strictly increasing, continuous function on [0, 1] whose

derivative vanishes at Lebesgue almost every point. Here, we can do better.
Namely, referring to part (iii), let ∆p denote the set of x ∈ [0, 1) such that

lim
n→∞

1
n

Σn(x) = p where Σn(x) ≡
n∑

m=1

εm(x).

We know that ∆ 1
2

has Lebesgue measure 1. Show that, for each x ∈ ∆ 1
2

and
p ∈ (0, 1) \ { 1

2}, Fp is differentiable with derivative 0 at x.

Hint: Given x ∈ [0, 1), define

Ln(x) =
n∑

m=1

2−mεm(x) and Rn(x) = Ln(x) + 2−n.

Show that

Fp
(
Rn(x)

)
− Fp

(
Ln(x)

)
= Mp

(
n∑

m=1

2−mωm = Ln(x)

)
= pΣn(x)(1− p)n−Σn(x).

When p ∈ (0, 1) \ { 1
2} and x ∈ ∆ 1

2
, use this together with 4p(1− p) < 1 to show

that

lim
n→∞

n log

(
Fp
(
Rn(x)

)
− Fp

(
Ln(x)

)
Rn(x)− Ln(x)

)
< 0.

To complete the proof, for given x ∈ ∆ 1
2

and n ≥ 2 such that Σn(x) ≥ 2, let

Mn(x) denote the largest m < n such that εm(x) = 1, and show that Mn(x)
n −→ 1

as n→∞. Hence, since 2−n−1 < h ≤ 2−n implies that

Fp(x)− Fp(x− h)
h

≤ 2n−Mn(x)+1Fp(
(
Rn(x)

)
− Fp(

(
Ln(x)

)
Rn(x)− Ln(x)

,

one concludes that Fp is left-differentiable at x and has left derivative equal to
0 there. To get the same conclusion about right derivatives, simply note that
Fp(x) = 1− F1−p(1− x).

(v) Again let p ∈ (0, 1) \ { 1
2} be given, but this time choose x ∈ ∆p. Show that

lim
h↘0

Fp(x+ h)− Fp(x)
h

= +∞.

The argument is similar to the one used to handle part (iv). However, this time
the role played by the inequality 4pq < 1 is played here by (2p)p(2q)q > 1 when
q = 1− p.



§1.5 Law of the Iterated Logarithm 49

§1.5 Law of the Iterated Logarithm
Let X1, . . . , Xn, . . . be a sequence of independent, identically distributed ran-

dom variables with mean-value 0 and variance 1. In this section, we will in-
vestigate exactly how large

{
Sn : n ∈ Z+

}
can become as n → ∞. To get a

feeling for what we should be expecting, first note that, by Corollary 1.4.8, for
any nondecreasing

{
bn
}∞

1
⊆ (0,∞),

Sn
bn
−→ 0 P -almost surely if

∞∑
n=1

1
b2n

<∞.

Thus, for example, Sn grows more slowly than n
1
2 log n. On the other hand, if

the Xn’s are N (0, 1)-random variables, then so are the random variables Sn√
n

;
and therefore, for every R ∈ (0,∞),

P

(
lim
n→∞

Sn√
n
≥ R

)
= lim
N→∞

P

 ⋃
n≥N

{
Sn√
n
≥ R

}
≥ lim
N→∞

P

(
SN√
N
≥ R

)
> 0.

Hence, at least for normal random variables, we can use Lemma 1.4.1 to see that

lim
n→∞

Sn√
n

=∞ P -almost surely;

and so Sn grows faster than n
1
2 .

If, as we did in Section 1.3, we proceed on the assumption that Gaussian
random variables are typical, we should expect the growth rate of the Sn’s to be
something between n

1
2 and n

1
2 log n. What, in fact, turns out to be the precise

growth rate is

(1.5.1) Λn ≡
√

2n log(2)(n ∨ 3)

where log(2) x ≡ log
(
log x

)
(not the logarithm with base 2) for x ∈ [e,∞). That

is, one has the Law of the Iterated Logarithm:

(1.5.2) lim
n→∞

Sn
Λn

= 1 P -almost surely.

This remarkable fact was discovered first for Bernoulli random variables by Khin-
chine, was extended by Kolmogorov to random variables possessing 2 + ε mo-
ments, and eventually achieved its final form in the work of Hartman and Wint-
ner. The approach which we will adopt here is based on ideas (taught to the
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author by M. Ledoux) introduced originally to handle generalizations of (1.5.2)
to random variables with values in a Banach space.∗ This approach consists of
two steps. The first establishes a preliminary version of (1.5.2) which, although
it is far cruder than (1.5.2) itself, will allow us to justify a reduction of the gen-
eral case to the case of bounded random variables. In the second step, we deal
with bounded random variables and more or less follow Khinchine’s strategy
for deriving (1.5.2) once one has estimates like the ones provided by Theorem
1.3.12.

In what follows, we will use [β] ≡ max
{
n ∈ Z : n ≤ β

}
to denote the integer

part of β ∈ R and will define

Λβ = Λ[β] and S̃β =
S[β]

Λβ
for β ∈ [3,∞).

Lemma 1.5.3. Let
{
Xn

}∞
1

be a sequence of independent, identically distribut-

ed random variables with mean-value 0 and variance 1. Then, for any a ∈ (0,∞)
and β ∈ (1,∞),

lim
n→∞

∣∣S̃n∣∣ ≤ a (a.s., P ) if

∞∑
m=1

P
(∣∣S̃βm∣∣ ≥ a β− 1

2

)
<∞.

Proof: Let β ∈ (1,∞) be given and, for each m ∈ N and 1 ≤ n ≤ βm, let αm,n
be a median (cf. (1.4.11)) of S[βm]−Sn. Noting that, by (1.4.12),

∣∣αm,n∣∣ ≤ √2βm,
we see that

lim
n→∞

∣∣S̃n∣∣ = lim
m→∞

max
βm−1≤n≤βm

∣∣S̃n∣∣
≤ β 1

2 lim
m→∞

max
βm−1≤n≤βm

∣∣Sn∣∣
Λβm

≤ β 1
2 lim
m→∞

max
n≤βm

∣∣Sn + αm,n
∣∣

Λβm
;

and therefore,

P
(

lim
n→∞

∣∣S̃n∣∣ ≥ a) ≤ P ( lim
m→∞

max
n≤βm

∣∣Sn + αm,n
∣∣

Λβm
≥ a β− 1

2

)
.

But, by Theorem 1.4.13,

P

(
max
n≤βm

∣∣Sn + αm,n
∣∣

Λβm
≥ aβ − 1

2

)
≤ 2P

(∣∣S̃βm∣∣ ≥ aβ− 1
2

)
,

and so the desired result follows from the Borel–Cantelli Lemma. �
∗ See M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer–Verlag Ergebnisse
Series 3.Folge·Band 23 (1991).
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Lemma 1.5.4. For any sequence {Xn}∞1 of independent, identically distributed
random variables with mean-value 0 and variance σ2,

(1.5.5) lim
n→∞

∣∣S̃n∣∣ ≤ 8σ (a.s., P).

Proof: Without loss in generality, we assume throughout that σ = 1; and,
for the moment, we will also assume that the Xn’s are symmetric (cf. Exercise
1.4.24). By Lemma 1.5.3, we will know that (1.5.5) holds with 8 replaced by 4
once we show that

(*)
∞∑
m=0

P
(∣∣S̃2m

∣∣ ≥ 2
3
2

)
<∞.

In order to take maximal advantage of symmetry, let (Ω,F ,P) be the probability
space on which the Xn’s are defined, use {Rn}∞1 to denote the sequence of
Rademacher functions on [0, 1) introduced in Section 1.1, and set Q = λ[0,1)×P
on
(
[0, 1)× Ω,B[0,1) × F

)
. It is then an easy matter to check that symmetry of

the Xn’s is equivalent to the statement that

ω ∈ Ω −→
(
X1(ω), . . . , Xn(ω), . . .

)
∈ RZ+

has the same distribution under P as

(t, ω) ∈ [0, 1)× Ω 7−→
(
R1(t)X1(ω), . . . , Rn(t)Xn(ω), . . .

)
∈ RZ+

does under Q. Next, using the last part of (iii) in Exercise 1.3.18 with σk =
Xk(ω), note that:

λ[0,1)

({
t ∈ [0, 1) :

∣∣∣∣ 2m∑
n=1

Rn(t)Xn(ω)
∣∣∣∣ ≥ a}

)

≤ 2 exp

[
− a2

2
∑2m

n=1Xn(ω)2

]
, a ∈ [0,∞) and ω ∈ Ω.

Hence, if

Am ≡

{
ω ∈ Ω :

1
2m

2m∑
n=1

Xm(ω)2 ≥ 2

}
and

Fm(ω) ≡ λ[0,1)

({
t ∈ [0, 1) :

∣∣∣∣∣
2m∑
n=1

Rn(t)Xn(ω)

∣∣∣∣∣ ≥ 2
3
2 Λ2m

})
,
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then, by Tonelli’s Theorem,

P
({
ω ∈ Ω :

∣∣S2m(ω)
∣∣ ≥ 2

3
2 Λ2m

})
=
∫

Ω

Fm
(
ω)P (dω)

≤ 2
∫

Ω

exp

[
− 8Λ2

2m

2
∑2m

n=1Xn(ω)2

]
P (dω) ≤ 2 exp

[
−4 log(2) 2m

]
+ 2P

(
Am
)
.

Thus, (*) comes down to proving that
∑∞
m=0 P

(
Am
)
<∞, and in order to check

this we argue in much the same way as we did when we proved the converse
statement in Kolmogorov’s Strong Law. Namely, set

Tm =
2m∑
n=1

X2
n, Bm =

{
Tm+1 − Tm

2m
≥ 2
}
, and Tm =

Tm
2m

for m ∈ N. Clearly, P
(
Am
)

= P
(
Bm
)
. Moreover, the sets Bm, m ∈ N, are

mutually independent; and therefore, by the Borel–Cantelli Lemma, we need
only check that

P
(

lim
m→∞

Bm

)
= P

(
lim
m→∞

Tm+1 − Tm
2m

≥ 2
)

= 0.

But, by The Strong Law, we know that Tm −→ 1 (a.s., P), and therefore it is
clear that

Tm+1 − Tm
2m

−→ 1 (a.s., P).

We have now proved (1.5.5) with 4 replacing 8 for symmetric random variables.
To eliminate the symmetry assumption, again let (Ω,F ,P) be the probability
space on which the Xn’s are defined, let

(
Ω′,F ′, P ′

)
be a second copy of the

same space, and consider the random variables

(ω, ω′) ∈ Ω× Ω′ 7−→ Yn
(
ω, ω′

)
≡ Xn(ω)−Xn(ω′)√

2

under the measure Q ≡ P × P ′. Since the Yn’s are obviously symmetric, the
result which we have already proved says that

lim
n→∞

∣∣Sn(ω)− Sn(ω′)
∣∣

Λn
≤ 2

5
2 ≤ 8 for Q-almost every (ω, ω′) ∈ Ω× Ω′.

Now suppose that limn→∞
|Sn|
Λn

> 8 on a set of positive P-measure. Then, by
Kolmogorov’s 0–1 Law, there would exist an ε > 0 such that

lim
n→∞

|Sn(ω)|
Λn

≥ 8 + ε for P-almost every ω ∈ Ω;
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and so, by Fubini’s Theorem,∗ we would have that, for Q-almost every (ω, ω′) ∈
Ω× Ω′, there is a

{
nm(ω) : m ∈ Z+

}
⊆ Z+ such that nm(ω)↗∞ and

lim
m→∞

∣∣Snm(ω)(ω′)
∣∣

Λnm(ω)

≥ lim
m→∞

∣∣Snm(ω)(ω)
∣∣

Λnm(ω)
− lim
m→∞

∣∣Snm(ω)(ω)− Snm(ω)(ω′)
∣∣

Λnm(ω)
≥ ε.

But, again by Fubini’s Theorem, this would mean that there exists a {nm : m ∈

Z+} ⊆ Z+ such that nm ↗ ∞ and limm→∞

∣∣Snm (ω′)
∣∣

Λnm
≥ ε for P′-almost every

ω′ ∈ Ω′; and obviously this contradicts

EP
′

[(
Sn
Λn

)2
]

=
1

2 log(2) n
−→ 0. �

We have now got the crude statement alluded to above. In order to get the
more precise statement contained in (1.5.2), we will need the following applica-
tion of the results in Section 3.

Lemma 1.5.6. Let
{
Xn

}∞
1

be a sequence of independent random variables
with mean-value 0, variance 1, and common distribution µ. Further, assume
that (1.3.4) holds. Then, for each R ∈ (0,∞) there is an N(R) ∈ Z+ such that

(1.5.7) P
(∣∣S̃n∣∣ ≥ R) ≤ 2 exp

[
−

(
1−K

√
8R log(2) n

n

)
R2 log(2) n

]

for n ≥ N(R). In addition, for each ε ∈ (0, 1], there is an N(ε) ∈ Z+ such that,
for all n ≥ N(ε) and |a| ≤ 1

ε ,

(1.5.8) P
(∣∣S̃n − a∣∣ < ε

)
≥ 1

2
exp
[
−
(
a2 + 4K|a|ε

)
log(2) n

]
.

In both (1.5.7) and (1.5.8), the constant K ∈ (0,∞) is the one in Theorem
1.3.15.

Proof: Set

λn =
Λn
n

=
(2 log(2)(n ∨ 3)

n

) 1
2

.

∗ This is Fubini at his best and subtlest. Namely, we are using Fubini to switch between
horizontal and vertical sets of measure 0.
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To prove (1.5.7), simply apply the upper bound in the last part of Theorem
1.3.15 to see that, for sufficiently large n ∈ Z+,

P
(∣∣S̃n∣∣ ≥ R) = P

(∣∣Sn∣∣ ≥ Rλn)
≤ 2 exp

[
−n
(

(Rλn)2

2
−K

(
Rλn

)3)]
.

To prove (1.5.8), first note that

P
(∣∣S̃n − a∣∣ < ε

)
= P

(∣∣Sn − an∣∣ < εn

)
,

where an = aλn and εn = ελn. Thus, by the lower bound in the last part of
Theorem 1.3.15,

P
(∣∣S̃n − a∣∣ < ε

)
≥
(

1− K

nε2n

)
exp

[
−n
(
a2
n

2
+K|an|

(
εn + a2

n

))]

≥

(
1− K

2ε2 log(2) n

)
exp

[
−
(
a2 + 2K|a|

(
ε+ a2λn

))
log(2) n

]
for sufficiently large n’s. �

Theorem 1.5.9 (Law of Iterated Logarithm). The equation (1.5.2) holds

for any sequence
{
Xn

}∞
1

of independent, identically distributed random vari-
ables with mean-value 0 and variance 1. In fact, P-almost surely, the set of limit

points of
{
Sn
Λn

}∞
1

coincides with the entire interval [−1, 1]. Equivalently, for any

f ∈ C
(
R; R

)
,

(1.5.10) lim
n→∞

f

(
Sn
Λn

)
= sup
t∈[−1,1]

f(t) (a.s., P).

(Cf. Exercise 1.5.13 below for a converse statement.)

Proof: We begin with the observation that, because of (1.5.5), we may restrict
our attention to the case when the Xn’s are bounded random variables. Indeed,
for any Xn’s and any ε > 0, an easy truncation procedure allows us to find an
ψ ∈ Cb(R; R) such that Yn ≡ ψ ◦ Xn again has mean-value 0 and variance 1
while Zn ≡ Xn − Yn has variance less than ε2. Hence, if the result is known
when the random variables are bounded, then, by (1.5.5) applied to the Zn’s:

lim
n→∞

∣∣S̃n(ω)
∣∣ ≤ 1 + lim

n→∞

∣∣∣∣∑n
m=1 Zm(ω)

Λn

∣∣∣∣ ≤ 1 + 8ε,
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and, for a ∈ [−1, 1],

lim
n→∞

∣∣S̃n(ω)− a
∣∣ ≤ lim

n→∞

∣∣∣∣∑n
m=1 Zm(ω)

Λn

∣∣∣∣ ≤ 8ε

for P-almost every ω ∈ Ω.
In view of the preceding, from now on we may and will assume that the Xn’s

are bounded. To prove that limn→∞ S̃n ≤ 1 (a.s., P), let β ∈ (1,∞) be given
and use (1.5.7) to see that

P
(∣∣S̃βm∣∣ ≥ β 1

2

)
≤ 2 exp

[
−β 1

2 log(2)

[
βm
]]

for all sufficiently large m ∈ Z+. Hence, by Lemma 1.5.3 with a = β, we see
that limn→∞

∣∣S̃n∣∣ ≤ β (a.s., P) for every β ∈ (1,∞). To complete the proof, we
must still show that, for every a ∈ (−1, 1) and ε > 0,

P
(

lim
n→∞

∣∣S̃n − a∣∣ < ε
)

= 1.

Because we want to get this conclusion as an application of the second part of
the Borel–Cantelli Lemma, it is important that we be dealing with independent
events; and for this purpose, we use the result just proved to see that, for every
integer k ≥ 2,

lim
n→∞

∣∣S̃n − a∣∣ ≤ lim
k→∞

lim
m→∞

∣∣S̃km − a∣∣
= lim
k→∞

lim
m→∞

∣∣∣∣Skm − Skm−1

Λkm
− a
∣∣∣∣ P -almost surely.

Thus, because the events

Ak,m ≡
{∣∣∣∣Skm − Skm−1

Λkm
− a
∣∣∣∣ < ε

}
, m ∈ Z+,

are independent for each k ≥ 2, all that we need to do is check that

∞∑
m=1

P
(
Ak,m

)
=∞ for sufficiently large k ≥ 2.

But

P
(
Ak,m

)
= P

(∣∣∣∣S̃km−km−1 − Λkma
Λkm−km−1

∣∣∣∣ < Λkmε
Λkm−km−1

)
,

and, because

lim
k→∞

max
m∈Z+

∣∣∣∣ Λkm
Λkm−km−1

− 1
∣∣∣∣ = 0,
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everything reduces to showing that

(*)
∞∑
m=1

P
(∣∣S̃km−km−1 − a

∣∣ < ε
)

=∞

for each k ≥ 2, a ∈ (−1, 1), and ε > 0. Finally, referring to (1.5.8), choose ε0 > 0
so small that ρ ≡ a2 + 4Kε0|a| < 1, and conclude that, when 0 < ε < ε0,

P
(∣∣S̃n − a∣∣ < ε

)
≥ 1

2
exp
[
−ρ log(2) n

]
for all sufficiently large n’s; from which (*) is easy. �

Remark 1.5.11. The reader should notice that the Law of the Iterated Log-
arithm provides a naturally occurring sequence of functions which converge in
measure but not almost everywhere. Indeed, it is obvious that S̃n −→ 0 in
L2(P ), but the Law of the Iterated Logarithm says that

{
S̃n
}∞

1
is wildly diver-

gent when looked at in terms of P-almost sure convergence.

Exercises for § 1.5

Exercise 1.5.12. Let X and X ′ be a pair of independent random variables
which have the same distribution, let α be a median of X, and set Y = X −X ′.

(i) Show that Y is symmetric and that

P
(∣∣X − α∣∣ ≥ t) ≤ 2P

(∣∣Y ∣∣ ≥ t) for all t ∈ [0,∞),

and conclude that, for any p ∈ (0,∞),

2−
1
p∨1EP[Y p] 1

p ≤ EP[Xp
] 1
p ≤ 2( 1

p−1)+
(

2EP[Y p] 1
p + |α|

)
.

In particular, |Xp is integrable if and only if |Y |p is.

(ii) As an initial application of (i), we give our final refinement of The Weak Law
of Large Numbers. Namely, let

{
Xn

}∞
1

be a sequence of independent, identically
distributed random variables. By combining Exercise 1.2.12, part (ii) in Exercise
1.4.25, and part (i) above, show that∗

lim
n→∞

P
(∣∣Sn∣∣ ≤ C) = 1 for some C ∈ (0,∞)

=⇒ lim
n→∞

nP
(
|X1| ≥ n

)
= 0

=⇒ Sn − EP[X1, |X1| ≤ n
]
−→ 0 in P-probability.

∗ These ideas are taken from the book by Wm. Feller cited at the end of §1.2. They become
even more elegant when combined with a theorem due to E.J.G. Pitman (cf. ibid.).
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Exercise 1.5.13. Let X1, . . . , Xn, . . . be a sequence of independent, identi-
cally distributed random variables for which

(1.5.14) P
(

lim
n→∞

|Sn|
Λn

<∞
)
> 0.

In this exercise we will show∗ that X1 is square P-integrable, EP[X1

]
= 0, and

(1.5.15) lim
n→∞

Sn
Λn

= − lim
n→∞

Sn
Λn

= EP[X2
1

] 1
2 (a.s., P).

(i) Using Lemma 1.4.1, show that there is a σ ∈ [0,∞) such that

(1.5.16) lim
n→∞

∣∣Sn∣∣
Λn

= σ (a.s., P).

Next, assuming that X1 is square P-integrable, use The Strong Law of Large
Numbers together with Theorem 1.5.9 to show that EP[X1

]
= 0 and

σ = EP[X2
1

] 1
2 = lim

n→∞

Sn
Λn

= − lim
n→∞

Sn
Λn

(a.s., P).

In other words, everything comes down to proving that (1.5.14) implies that X1

is square P-integrable.

(ii) Assume that the Xn’s are symmetric. For t ∈ (0,∞), set

X̌t
n = Xn 1[0,t]

(
|Xn|

)
−Xn 1(t,∞)

(
|Xn|

)
,

and show that (
X̌t

1, . . . , X̌
t
n, . . .

)
and

(
X1, . . . , Xn, . . .

)
have the same distribution. Conclude first that, for all t ∈ [0, 1),

lim
n→∞

∣∣∑n
m=1Xn 1[0,t]

(
|Xn|

)∣∣
Λn

≤ σ (a.s., P),

where σ is the number in (1.5.16), and second that

EP[X2
1

]
= lim
t↗∞

EP
[
X2

1 ,
∣∣X1

∣∣ ≤ t] ≤ σ2.

Hint: Use the equation

Xn 1[0,t]

(
|Xn|

)
=
Xn + X̌t

n

2
,

and apply part (i).

∗ We follow Wm. Feller “An extension of the law of the iterated logarithm,” J. Math. Mech.
18, although V. Strassen was the first to prove the result.
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(iii) For general
{
Xn

}∞
1

, produce an independent copy
{
X ′n
}∞

1
(as in the proof

of Lemma 1.5.4), and set Yn = Xn −X ′n. After checking that

lim
n→∞

|
∑n
m=1 Ym|
Λn

≤ 2σ (a.s., P),

conclude first that EP[Y 2
1

]
≤ 4σ2 and then (cf. part (i) of Exercise1.5.12) that

EP[X2
1

]
<∞. Finally, apply (i) to arrive at EP[X1

]
= 0 and (1.5.15).

Exercise 1.5.17. Let
{
s̃n
}∞

1
be a sequence of real numbers which possess the

properties that

lim
n→∞

s̃n = 1, lim
n→∞

s̃n = −1, and lim
n→∞

∣∣s̃n+1 − s̃n
∣∣ = 0.

Show that the set of sub-sequential limit points of
{
s̃n
}∞

1
coincides with [−1, 1].

Apply this observation to show that in order to get the final statement in The-
orem 1.5.9, we need only have proved (1.5.10) for the function f(x) = x, x ∈ R.

Hint: In proving the last part, use the square integrability of X1 to see that

∞∑
n=1

P

(
X2
n

n
≥ 1
)
<∞,

and apply the Borel–Cantelli Lemma to conclude that S̃n− S̃n−1 −→ 0 (a.s., P).


