
Problem Set 2, Petar Maymounkov
6.841J – Advanced Complexity with Prof. Madhu Sudan
Collaborators: Oren Weimann, Alex Andoni, Krzysztof Onak

1. Circuit-size Hierarchy:

Let Fn be the set of binary functions on n variables, and Cn(t(n)) be the set of binary functions on
n variables computable by circuits of size at most t(n).

We use that every f ∈ Fn can be computed by some cf ∈ Cn(O(2n/n)), and therefore Fn ⊆
Cn(O(2n/n)). Furthermore, we use that |Cn(t(n))| = 2O(t(n) ln t(n)).

Set x(n) = ln
(
f(n) ln f(n)

)
. Note that x(n) ≤ n. Set A = Cn

(
o(f(n))

)
, B = Fx and C =

Cn

(
O(2x/x)

)
. We will show that A B ⊆ C which would imply that there exists g ∈ Fx ⊆ Fn

computable by a
(
f(n) ln f(n)

)
-size circuit, and not computable by a o

(
f(n)

)
-size circuit. B ⊆ C

follows immediately from the facts above. For A B we use that |A| ≤ 2o(f(n) ln f(n)) � f(n)f(n) =
|B|.

2. Poly-size Circuits:

If NP ⊆ P/poly then Ladner’s theorem provides the desired language. Otherwise, NP 6⊂ P/poly
and hence no NP-hard language is in P/poly. On the other hand, the unary halting problem (in
P/1) is not in NP. And we are done.

TIME(2nlog n
) 6⊂ P/poly: We would like to build a machine M such that for all input lengths n ∈ N,

and all circuits C ∈ NC of size at most g = n
√

log n (super-polynomial), there exists x ∈ {0, 1}n with
M(x) 6= C(x). Since g(n) is super-polynomial, eventually M will differ from all polynomial-size
circuits.

Let C = c1, . . . , cm be an enumeration of all circuits on n inputs of size at most g = n
√

log n. By
counting, m ≤ 3g(g + n)2g = 2O(g log g). Let α1, . . . , α2n be all possible values of the input. M(x) is
computed as follows:

1. Set i← 1 and R← C

2. While R 6= ∅, repeat:

i. M(αi)← ¬Maj(R)

ii. R← {c ∈ C | c(αi) 6= M(αi)}
iii. i← i + 1

3. For j ≥ i set M(αj)← 0

We are thus left to show that M runs in time 2nlog n
. It is easy to see that M simulates at most 2m

circuits, each requiring n
√

log n steps, for a total:

2O(n
√

log n·log3/2 n) � 2O(nlog n)

2-1

3. CNF, DNF, and Branching Programs:

Let k-DNF formula ΦDNF and an l-CNF formula ΦCNF be given for a boolean function f : {0, 1}n →
{0, 1}. It then immediately follows that the following hold:∧

C∈ΦCNF

∧
T∈ΦDNF

∨
l∈T

C 3 l (†)

∧
T∈ΦDNF

∧
C∈ΦCNF

∨
l∈C

T 3 l (‡)

Where T is a term, C is a clause and l is a literal.

Let Ak,l be the set of binary functions on n variables that have a k-DNF and an l-CNF formulas.
For a fixed function Φ ∈ Ak,l we describe a depth-k branching program (BP) that either evaluates Φ
on an input x ∈ {0, 1}n or makes a recursive call to a BP evaluator for Φ′ ∈ Ak,l−1 on x′ ∈ {0, 1}n−k,
where x′ ⊂ x.

Let T ∈ ΦDNF be a DNF term and assume T = x1 . . . xk. If T is true in x then halt and output
“1”. Otherwise, according to (†) we can remove at least one literal (in T) from each clause in ΦCNF

thus obtaining Φ′, which we evaluate on xk+1, . . . , xn recursively.

Similarly, for Φ ∈ Ak,l we have a depth-l BP that either evaluates Φ on x, or makes a recursive call
to a BP evaluator for Φ′ ∈ Ak−1,l on x′ ∈ {0, 1}n−l, where x′ ⊂ x.

Using these two constructions, it is straightforward that f(k, l) ≤ kl + min{k, l}. (You can also do
a little better and get kl.)

4. Finding a satisfying assignment when there are many:

(This solution is adapted from Hirsch’98.) For a formula f on n variables X = {x1, . . . , xn} we
let f [l1, . . . , lk], where L = {l1, . . . , lk} are literals in X, be the formula obtained by restricting f ’s
inputs correspondingly.

For a k-CNF f consider the following algorithm:

1. i← 0, Φ0 = {f} and Φ1 = · · · = Φn = ∅

2. For all g ∈ Φi, do:

i. Let (l1 ∨ · · · ∨ lr) be the shortest clause in g

ii. Consider the restrictions g[l1], g[l1, l2], . . . , g[l1, . . . , lr−1, lr]. If any one of them is ≡ 1 then
halt the algorithm and output a satisfying assignment for f . Otherwise, set Φi+1 ← Φi+1 ∪
{g[l1], g[l1, l2], . . . , g[l1, . . . , lr−1, lr]}

3. i← i + 1. If i > d, where d is a threshold to be specified later, halt the algorithm and output “f
has less than ε2n satisfying assignments”

4. Go to step 2

2-2

Let T be the abstract tree induced by this algorithm, where each node v corresponds to a restriction
v = f [. . .] and a node u is a parent of v iff v is a restriction of u created in step 2.ii. of the algorithm.
Let T be a subtree and v be a node in it. We define the floor of v with respect to T , denoted ϕT (v),
to be the number of variables in T ’s root that are restricted in v. Furthermore, we refine our
notation by ΦT

i := {v ∈ T | ϕT (v) = i}, and thus Φi = ΦR
i where R is the whole tree.

Let’s make an argument for soundness first. Assume the algorithm has reached to the point when
Φi is complete, but it hasn’t been processed yet (step 2). This implies that there are no satisfying
partial assignments of at most i variables and furthermore any potential satisfying assignment must
also be satisfying for some v ∈ Φi ∪ · · · ∪ Φi+k−1. Every v ∈ Φi+j , where 0 ≤ j < k, can have at
most 2n−i−j satisfying assignments. Therefore, at this point of the execution we have certified that
f has at most Mi =

∑k−1
j=0 |Φi+j | · 2n−i−j satisfying assignments in total. The threshold d is chosen

so that the algorithm stops as soon as Md/2n < ε. This completes soundness. We now analyze the
running time.

We begin by deriving that |Φi| ≤ λi
k where λk is the unique positive solution of hk(x) = 1− x−1 −

· · · − x−k. Induct on the size of T . In the base, |T | = 1 and we check that Φ0 = 1 ≤ λ0
k = 1 and

Φi = 0 < λi
k = 1 for i > 0. For the step, we let R be the root of the tree and T1, . . . , Tl, where

0 ≤ l ≤ k, be the subtrees of its children:

|ΦR
i | =

l∑
j=1

|ΦTj

i−j | ≤
l∑

j=1

λi−j
k = λi

k

l∑
j=1

λ−j
k ≤ λi

k

k∑
j=1

λ−j
k = λi

k ·
(
1− hk(λk)

)
≤ λi

k

Using this bound we can now derive d ≥ log 2/ε
log 2/λk

using Md/2n < ε and:

k−1∑
j=0

|Φd+j | · 2n−d−j ≤
k−1∑
j=0

λd
k · 2n−d−j ≤ 2 · λd

k · 2n−d

We have thus far shown that if a f has “many” satisfying assignments, then it has a partial satisfying
assignment on log 2/ε

log 2/λk
+ k − 1 variables.

Finally, we need to show that the size of the tree is small:

|T | =
i−1∑
i=0

|Φi|+
k−1∑
j=0

|Φi+j | ≤
i−1∑
i=0

λi
k + k · λi

k = · · · = O

(
k(2/ε)

(
logλk

2−1
)−1)

The algorithm spends L steps at each tree node, where L is the size of f . This concludes the proof
that the algorithm runs in polynomial time.

5. Majority:

As seen from Smolensky’s proof that ⊕2 6∈ AC0, it is the case that ⊕3 6∈ AC0
⊕2

(where AC⊕2 stands
for AC with parity gates). Therefore, it would be sufficient to show that ⊕3 ≤ Maj using a constant
depth, polynomial size reduction.

For x ∈ {0, 1}n, let ≥1,t (x) be a circuit that determines if #1(x) ≥ t, where #1(x) is the number of
1’s in x. To implement GE1,t(x), assume w.l.o.g. t ≤ n/2 and verify that GE1,t(x) := Maj(1n−2t ·x)

2-3

works. We can now also implement EQ1,t(x) which decides whether x has exactly t entries 1, as
EQ1,t(x) := GE1,t(x) ∧GE0,|x|−t(x).

Then, set k := dn/3e and define:

⊕3(x) :=


0, if

∨k
i=0 EQ1,3k(x)

1, if
∨k

i=0 EQ1,3k+1(x)
2, otherwise

This completes the reduction ⊕3 ≤ Maj (and the problem).

6. A Lower Bound via Communication Complexity:

We assume for contradiction that there exists a 1-tape Turing machine M that solves the PALIN-
DROME language in o(n2) time. Using M we build a communication protocol for EQ which has
worst-case complexity o(n), leading to a contradiction.

Let Alice be given x ∈ {0, 1}n and Bob be given y ∈ {0, 1}n. (Making sure that |x| = |y| is trivial
using two log n-bit rounds.)

Alice runs M on input wx = x · 0n · xR and recognizes a location ix ∈ [n + 1, 2n] on the tape such
that the number of times M ’s pointer passes through ix is o(n). Let’s see why such an i always
exists. Let ci(w) be the number of times M ’s pointer passes through i during computation on w.
Since M runs in o(n2), we have that

∑
n<i≤2n ci(w) = o(n2), and thus by averaging there is an ix

for which cix(w) = o(n). Bob performs a similar computation with wy = y · 0n · yR.

Next, Alice and Bob exchange the indices ix and iy in two rounds of log n-bits each. If the indices
differ, then x 6= y and the protocol is over. Otherwise:

Alice and Bob simulate an imaginary run of M on tape x · 0n · yR, such that at any point either
Alice or Bob is simulating and they alternate whenever M ’s cursor passes through the agreed upon
location i. Control is transferred by sending M ’s state in O(1)-bits.

If x = y the simulated computation will go exactly as Alice and Bob expect, in o(n) rounds and
bits and they will accept. If x 6= y, it must be the case that Alice or Bob halts M pre-maturely, or
the state of M at hand-off is not what is expected. We have thus obtained a protocol for EQ which
requires o(n)-bits communication complexity in the worst case – a contradiction.

2-4

