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Oblivious routing problem
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Problem history

Input family Type Ratio M Time
[[topt o
hypercube 12 O(log n) n/a
any lo O(log® n) exp(n)
any l O(Iog2 n-loglogn)  poly(n)
any l1<p<oo O(log n) poly(n)
expanders loo O(log n) O(n) this work
" bigpgoo "

n/a

% Ratio lower-bound Q(log n/ log log n) for expanders
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New Algorithmics

% Computation

% Vertices = processors, edges = communication links
* O(log n) rounds of communication (for expanders)
% Asynchronous version as well

¢ Routing scheme representation
o Per-vertex routing tables of size deg(v) - n

% Querying the routing scheme

% At vertex v, given source s and sink t,
% Compute the next hop in O(1) time using local table
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New Mathematics

% Prior schemes on /., congestion use tree decompositions

% We use electric flow

% We use a geometric framework

log n)

% Ratio bound equals ||LT]|; 1 < O( S

% New rounding techniques
% Also see

% Fault-tolerance = statements about distribution of edge-flow
in electric current
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Demand and flow

¢ A demand is a vector like d = 15 — 1;
% Formally, any d € RY with }° d, =0

0 0
D 71
+1 0

¢ Fix any orientation u — v on G's edges
% A flow is a vector f € RE
< Think f,,.) flow travels from u to v if u — v

+1 -1
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Divergence operator, flow-demand connection

% The divergence operator, div : RE - RY,
% Maps an edge flow to vertex flow imbalance

% Vertex flow imbalance = incoming flow - outgoing flow

% Say that flow f routes demand d if div-f = d
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Linear routing schemes

% A linear routing scheme is a function R such that
% R maps a demand to a flow that routes it, and
% R:RY — RE is linear
% Algebraically,
% R:RY — RE is a routing iff linear and div-R - d = d for all d

% Examples

% Routing along a spanning tree, or
% Electric routing
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Sets of demands and flows

% Write a set of demands {d; € [RV},-:L._.,k as @;d; € RV*k
% Similarly, a set of flows {f; € [RE},-:L_,_J( as ®;f; € RExk

% Say flows @;f; route demands @;d; if div - (®;f;) = ®;d;
% Simply means:

% Flow f; routes demand d; for all i, by applying
“flow f routes demand d if div-f =d"

*

. |
x @ y means concatenate column vectors x and y into (Tyl .



Congestion and norms

% For a set of flows F = ®;f; the congestion equals
% The traffic on the most loaded edge, or

% Notably, congestion is a norm (over REX°)
% Abbreviate it as || F||



Worst-case demands

[R(D)]
I opt (D))

% Recall, for a scheme R, ratio is ng := maxp —————

% W.L.O.G. || opt(D)| = 1

Theorem For all such D, ||[R(D)|| < ||R(Dworst)||, where Dyorst
demands one unit of flow between endpoints of every edge in G.

% S0, g = [|R(Duorst )|
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Electric flow

+0.57V s

% How to map demand to electric flow?

V- -LI:RY = RE

% where V : RY — RE maps vertex
potentials to edge potential differences

% and L:=div-V



Derivation of electric flow

L=div-V
div i
vertex potentials edge flows vegt:X cljzr:?r?é‘;: ©
RV RE RV
Lt

% Ohm's law: edge flow = potential difference * edge conductance

% V maps vertex potentials to edge flow (Ohm's law)

% div maps edge flows to vertex flow imbalance (a.k.a. demand)

& V- LT maps demand to edge flows
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% Congestion and Ly spectral inequalities
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Ratio of electric routing

% Electric routing operator is V - L

o Worst-case demands are Dyorst (by theorem)
One unit of demand between the endpoints of every edge in G.

% So, competitive ratio equals |V - LT - Dyorst ||

~ ||LT|l1—1 when G is bounded degree

= maxsze |V - LT(Ls — 1¢) |1



Laplacian ¢; — ¢1 norm bound

Theorem: c
IVLH(s — Lo)]], < O(log n), if minscy AECS: = O(1).

;
% Think (1 — 1) ¥ x - £, and ask ||f]; <?
% Local property: Sum of edge lengths on any cut equals 1




Rounding argument

Idea Make a few cuts, then upper-
bound total edge length by (scaled)
edge length on cuts.

% Invariant k; = ©(n;)
% Cut spacing Aij1 = |6 — ciy1| =
twice the avg. edge length on ¢;

= kiy1 < Ok; where 0 < 6 < 1 const.
N A

B B B B 9

e o a @ % Using >, A < A= 0(1)
<

Conclude at most O(log n) cuts

ANj >

ki = number of edges cut by ¢;
n; = number of vertices to left of ¢;
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Remarks

% Computation

% Approximate LT by low-degree power-series polynomial in L
¢ Multiplication by L is one distributed step

% Potential perturbation

¢ Computed potentials are not exact
o Theorem Electric flow under perturbed potentials as good

¢ Laplacian symmetrization to get degree independence
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