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Oblivious routing problemOblivious routing problemOblivious routing problemOblivious routing problemOblivious routing problemOblivious routing problem

Ratio η = maxG ,D
‖tobl‖∞
‖topt‖∞

1 Graph instance

2 Oblivious routes

3
Adversarial
demands

5 Oblivious routing

4 Optimal routing

‖topt‖∞ = 1

1

1

1

0

‖tobl‖∞ = 2

0

0
2

1



Problem historyProblem historyProblem historyProblem historyProblem historyProblem history

Input family Type Ratio
‖tobl‖p

‖topt‖p
Time

hypercube `2 O(log n) n/a Valiant’81

any `∞ O(log3 n) exp(n) Räcke’02

any `∞ O(log2 n · log log n) poly(n) Harrelson’03

any `16p6∞ O(log n) poly(n) Räcke’08’10

expanders `∞ O(log n) Õ(n) this work

” `16p6∞ ” n/a Lawler’09

D Ratio lower-bound Ω(log n/ log log n) for expanders Hajiaghayi’06
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D Computation

D Vertices = processors, edges = communication links
D O(log n) rounds of communication (for expanders)
D Asynchronous version as well

D Routing scheme representation

D Per-vertex routing tables of size deg(v) · n

D Querying the routing scheme

D At vertex v , given source s and sink t,
D Compute the next hop in O(1) time using local table
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New MathematicsNew MathematicsNew MathematicsNew MathematicsNew MathematicsNew Mathematics

D Prior schemes on `∞ congestion use tree decompositions

D We use electric flow

D We use a geometric framework

D Ratio bound equals ‖L†‖1→1 6 O
( log n

λ

)
D New rounding techniques
D Also see Lawler’09

D Fault-tolerance = statements about distribution of edge-flow
in electric current
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D A demand is a vector like d = 1s − 1t

D Formally, any d ∈ RV with
∑

v dv = 0

+1 0

−1

00

D Fix any orientation u → v on G ’s edges

D A flow is a vector f ∈ RE

D Think f(u,v) flow travels from u to v if u → v
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D The divergence operator, div : RE → R
V ,

D Maps an edge flow to vertex flow imbalance

D Vertex flow imbalance = incoming flow - outgoing flow(
div · f

)
v

=
∑

u:u→v

f(u,v) −
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w :v→w

f(w ,v)

D Say that flow f routes demand d if div · f = d

+1 0

−1

00

1

1
1



Divergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connection

D The divergence operator, div : RE → R
V ,

D Maps an edge flow to vertex flow imbalance

D Vertex flow imbalance = incoming flow - outgoing flow(
div · f

)
v

=
∑

u:u→v

f(u,v) −
∑

w :v→w

f(w ,v)

D Say that flow f routes demand d if div · f = d

+1 0

−1

00

1

1
1



Divergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connectionDivergence operator, flow-demand connection

D The divergence operator, div : RE → R
V ,

D Maps an edge flow to vertex flow imbalance

D Vertex flow imbalance = incoming flow - outgoing flow(
div · f

)
v

=
∑

u:u→v

f(u,v) −
∑

w :v→w

f(w ,v)

D Say that flow f routes demand d if div · f = d

+1 0

−1

00

1

1
1



Linear routing schemesLinear routing schemesLinear routing schemesLinear routing schemesLinear routing schemesLinear routing schemes

D A linear routing scheme is a function R such that

D R maps a demand to a flow that routes it, and
D R : RV → R

E is linear

D Algebraically,

D R : RV → R
E is a routing iff linear and div ·R · d = d for all d

D Examples

D Routing along a spanning tree, or
D Electric routing
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Sets of demands and flowsSets of demands and flowsSets of demands and flowsSets of demands and flowsSets of demands and flowsSets of demands and flows

D Write a set of demands {di ∈ RV }i=1,...,k as ⊕idi ∈ RV×k

D Similarly, a set of flows {fi ∈ RE}i=1,...,k as ⊕i fi ∈ RE×k

D Say flows ⊕i fi route demands ⊕idi if div · (⊕i fi ) = ⊕idi

D Simply means:

D Flow fi routes demand di for all i , by applying
“ flow f routes demand d if div · f = d ”

∗ x ⊕ y means concatenate column vectors x and y into

„
| |
x y
| |

«
.
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Congestion and normsCongestion and normsCongestion and normsCongestion and normsCongestion and normsCongestion and norms

D For a set of flows F = ⊕i fi the congestion equals

D The traffic on the most loaded edge, or

D ‖F ∗‖1→1 where ‖A‖1→1 := supx

‖Ax‖1

‖x‖1

D Notably, congestion is a norm (over RE×∞)

D Abbreviate it as ‖F‖



Worst-case demandsWorst-case demandsWorst-case demandsWorst-case demandsWorst-case demandsWorst-case demands

D Recall, for a scheme R, ratio is ηR := maxD
‖R(D)‖
‖ opt(D)‖

D W.L.O.G. ‖ opt(D)‖ = 1

Theorem For all such D, ‖R(D)‖ 6 ‖R(Dworst)‖, where Dworst

demands one unit of flow between endpoints of every edge in G .

D So, ηR = ‖R(Dworst)‖
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D How to map demand to electric flow?

∇ · L† : RV → R
E

D where ∇ : RV → R
E maps vertex

potentials to edge potential differences

D and L := div ·∇
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Derivation of electric flowDerivation of electric flowDerivation of electric flowDerivation of electric flowDerivation of electric flowDerivation of electric flow

vertex potentials
R

V
edge flows

R
E

vertex imbalances
i.e. demands

R
V

∇ div

L†

L = div ·∇

D Ohm’s law: edge flow = potential difference * edge conductance

D ∇ maps vertex potentials to edge flow (Ohm’s law)

D div maps edge flows to vertex flow imbalance (a.k.a. demand)

D ∇ · L† maps demand to edge flows
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Ratio of electric routingRatio of electric routingRatio of electric routingRatio of electric routingRatio of electric routingRatio of electric routing

D Electric routing operator is ∇ · L†

D Worst-case demands are Dworst (by theorem)

One unit of demand between the endpoints of every edge in G .

D So, competitive ratio equals ‖∇ · L† · Dworst‖

≈ ‖L†‖1→1 when G is bounded degree

= maxs 6=t ‖∇ · L†(1s − 1t)‖1
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Laplacian `1 → `1 norm boundLaplacian `1 → `1 norm boundLaplacian `1 → `1 norm boundLaplacian `1 → `1 norm boundLaplacian `1 → `1 norm boundLaplacian `1 → `1 norm bound

Theorem:∥∥∇L†(1s − 1t)
∥∥

1
6 O(log n), if minS⊆V

|E(S ,S{)|
min |S |,|S{| = O(1).

D Think (1s − 1t)
L†7−→ x

∇7−→ f , and ask ‖f ‖1 6 ?

D Local property: Sum of edge lengths on any cut equals 1

x1 x2 x3 x4 x6x5 x7

s

t

fe

c



Rounding argumentRounding argumentRounding argumentRounding argumentRounding argumentRounding argument

∆3

c0c1c2c3

s

ki = number of edges cut by ci

ni = number of vertices to left of ci

Idea Make a few cuts, then upper-
bound total edge length by (scaled)
edge length on cuts.

D Invariant ki = Θ(ni )

D Cut spacing ∆i+1 = |ci − ci+1| =
twice the avg. edge length on ci

⇒ ki+1 6 θki where 0 < θ < 1 const.

⇒ ∆i+1 >
∆i

θ

D Using
P

i ∆i 6 λ−1 = O(1)

D Conclude at most O(log n) cuts
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RemarksRemarksRemarksRemarksRemarksRemarks

D Computation

D Approximate L† by low-degree power-series polynomial in L
D Multiplication by L is one distributed step

D Potential perturbation

D Computed potentials are not exact

D Theorem Electric flow under perturbed potentials as good

D Laplacian symmetrization to get degree independence
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