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Abstract—In many wireless ad-hoc networks it is important to
find a route that delivers a message to the destination within a
certain deadline (delay constraint). We propose to identify such
routes based on average channel state information (CSI) only,
since this information can be distributed more easily over the net-
work. Such cases allow probabilistic QoS guarantees i.e., we max-
imize and report the probability of on-time delivery. We develop
a convolution-free lower bound on probability of on-time arrival,
and a scheme to rapidly identify a path that maximizes this bound.
This analysis is motivated by a class of infinite variance subex-
ponential distributions whose properties preclude the use of devi-
ation bounds and convolutional schemes. The bound then forms
the basis of an algorithm that finds routes that give probabilistic
delay guarantees. Simulations demonstrate that the algorithm
performs better than shortest-path algorithm based on average
CSI.

I. INTRODUCTION

Wireless ad-hoc networks have in recent years emerged as
the most promising way to achieve ubiquitous, reliable con-
nectivity. All nodes have similar functionality, and information
is forwarded from the source to the destination via a number
of other (relaying) nodes. Ad-hoc networks provide advantages
to (i) cost, since no fixed infrastructure is required, (ii) flex-
ibility and ease of deployability, and (iii) reliability, since the
elimination of a single node does not lead to a failure of the
whole network. For this reason ad-hoc networks are popular
for applications ranging from communications for emergency
responders, collection of environmental data, factory automa-
tion to security and military applications.

In many applications ad-hoc networks have to provide a guar-
antee for quality-of-service (QoS); in this paper we particularly
consider the transmission delay from source to destination. For
example, a message that a piece of machinery is overheating
has to be delivered to the control center before the machine des-
troys itself. QoS in wireless ad-hoc networks is influenced by a
wide variety of factors, among them (i) call admission, (ii) ar-
rival statistics of packets from higher layers, (iii) scheduling and
multiple-access mechanisms, (iv) properties of the physical-
layer transmission, and (v) routing. For a survey of these issues
and methods to deal with them, see, e.g., [1], [2]. Due to all
those statistical variations, in particular of the physical layer, it
is not possible to give a perfect guarantee that a packet will ar-
rive at the receiver within a certain time; it is only possible to
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guarantee that in a certain percentage of all channel realizations
(e.g., 99%), the packets will arrive in time. We will henceforth
refer to such a statement for the probability of on-time arrival as
a "probabilistic guarantee".1 We note that while stochastic vari-
ations of the delay due to random packet arrival of the source
have been treated extensively in ther literature (see [4] and ref-
erences therein), random variations of the transmission time due
to randomly varying channels has drawn very little attention.

A topic of particular importance for QoS in ad-hoc networks
is routing, i.e., determining the nodes over which the inform-
ation is forwarded from source to destination [5]. Routing
algorithms can be roughly categorized as follows: (i) flood-
ing and gossiping, where the information is sent out from the
source, and either all, or randomly chosen nodes forward the
information. This approach does not require any knowlege
of channel state information by the nodes, but is energy inef-
ficient. (ii) geometry-based routing algorithms: an optimum
route is identified (in a central or distributed way) based on
the knowledge of the location of the nodes. However, since
short distance between two nodes does not necessarily mean
good propagation conditions, such algorithms can lead to sub-
optimum routes, (iii) route determination based on instantan-
eous channel state information (CSI), also called "stateful ap-
proach": in this category of algorithms, the optimum route is
determined from a global or distributed knowledge of the in-
stantaneous CSI of all the links [6], [7], [8]. This category also
subsumes methods that send out route discovery packets and
store the results in routing tables. A route that fulfills the QoS
constraints is determined and kept until it breaks (i.e., the QoS
constraint is violated); then the route is either repaired locally
[9], [10] or a new route is determined.

For many applications, route discovery based on instantan-
eous CSI is not feasible. Since wireless channel states can
be constantly changing, a frequent update of the CSI through-
out the network would lead to unacceptable overhead (typical
coherence times of wireless propagation channels, i.e, the re-
quired update interval, is on the order of a few milliseconds [3]).
Especially in large networks the overhead traffic communicat-
ing the routing information for all possible links would decrease
spectral efficiency and battery lifetime. On the other hand, on-
demand route discovery is not feasible because the route dis-
1This notion is similar in spirit to "outage probability" of cellular networks,

which defines the probability that a mobile station does not receive sufficient
signal power to communicate with a base station [3].
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covery process often takes longer than the admissible delay of
the information. For this reason, we provide in this paper a
method to perform routing based on the average CSI. Average
CSI changes only very slowly, so that it can be communicated
through a network without undue overhead.2 In particular, our
contributions are as follows
• We show that routing based on the statistics of the channel

state can provide probabilitistic quality-of-service guar-
antuees, in particular, a guarantee that packets are de-
livered to the destination within a deadline t in a fraction
p of all channel realizations.

• We introduce an extremely efficient routing algorithm that
finds the path that provides high QoS. In contrast to the
mostly heuristic routing algorithms in the literature, we
provide an analytical proof that the algorithm maximizes
a lower bound for the probability for on-time delivery.

The remainder of the paper is organized as follows: Sec-
tion II outlines the system model, in particular the assumptions
about the network topology, transmission scheme over one link,
and quality-of-service requirements. Section III is the core of
the paper, providing the algorithm, as well as the analytical
proof that it actually provides the quality of service. Section IV
demonstrates the algorithm by showing some simulation res-
ults. A summary and conclusions wrap up the paper.

II. SYSTEM MODEL

We consider a wireless network with K randomly placed
nodes; in Sec. III, the network will be described as a graph
withK nodes and n edges, i.,e., connections between the nodes.
Our goal is the transmission of a message from one source to
one destination (unicast), so that the delay is no larger than
t. We restrict our attention to the transmission delay caused
by the limited bitrate that can be sent over a wireless channel
(i.e., queuing delays of the packets at the transmitters are ig-
nored). Furthermore, we consider only a single message, as-
suming that other messages (between other transmitters and re-
ceivers) are transmitted on orthogonal channels; therefore, in-
terference does not play a role.

The power gain (inverse of the propagation attenuation)
along the i-th edge is denoted as γi; its probability density
function (PDF) is written as f(γi). The PDF of the link gains
are assumed to be independent. To make the following discus-
sion more concrete we assume henceforth that the links undergo
Rayleigh fading, i.e., the PDF of γi is [3]

fγij (γi) =
1

γi
exp [−γi/γi] , γi ≥ 0 (1)

where γi is the mean channel gain. The mean channel gains
change very slowly, even with highly mobile nodes (typically,
the means change 2 − 3 orders of magnitude slower than the
instantaneous link gains [3]. Thus information about the mean
channel gains can be assumed to be available throughout the
network.
2note again that routing based on geometrical information is less general

than routing based on average CSI; the average channel gain includes not only
the effect of the pathloss (which is related to the geometrical position of the
devices) but also shadowing, random variations of pathloss coefficients, etc.

Information is communicated throughout the network by
multiple-hop relaying with ideal physical-layer transmission.
In other words, on each link transmission is done at link ca-
pacity, so that the transmission time for a message with source
entropy Htarget on link i

xi =
Htarget

log [1 + γi]
, for γi ≥ 0 (2)

Since the links are Rayleigh fading, the PDF of the transmission
delay over one link is [11]

fXi(xi) =
Htarget

γix
2
i

exp

∙
1

γi
+

Htarget

xi
− eHtarget/xi

γi

¸
(3)

Note that this distribution has both an infinite mean and an in-
finite variance. It is also subexponential, meaning that it is more
heavy-tailed than any exponential distribution. Subexponen-
tials were intensely studied in the insurance literature [12] in the
1970s and 1980s, when catastrophic claims were sinking port-
folios that appeared to be properly risk-balanced and re-insured.
A key property is that the sum of iid subexponential variables is
likely to be dominated by a single variable, thus any sample is
likely to have extremely large values. Subexponential variables
have several other properties that thwart standard methods of
probabilistic inference and risk management, and also create
special problems for finding routing with stochastic guarantees.
It is a remarkable property of the algorithm developed in Sec.
III that it works even for these extremely difficult distributions.

There are a number of ways how transmission at link capa-
city can be approximately achieved. If the instantaneous CSI
is known at the transmitting node,3 a (near) capacity achiev-
ing code, e.g., turbo-code or LDPC code, suitable for the spe-
cific SNR at hand, can be used. If the instantaneous CSI is not
known, rateless codes [13], [14] can be used.

Our task is now to find a route such that maximizes the per-
centage of all channel states in which the route delay is no larger
than a threshold t.

III. THEORY AND ROUTING ALGORITHM

In this section, we develop the mathematical framework
for optimizing the probability of an event involving multiple
random variables, particularly when integration is infeasible,
which makes it impossible to reason about convolutions or mo-
ments. The chief result is a distribution-independent lower
bound. We design a stochastic routing algorithm around this
bound, give upper and lower bounds for the probability of on-
time delivery, and show that the algorithm maximizes the lower
bound. The results are very general and their application to
statistics of the form Eq. (3), as done in Sec. IV, is only an
example.

A. Mathematical preliminaries
Let Xi be a random variable; xi be a realization of Xi;

and, for a set of random variables X1,X2, · · · ,Xn, let E :

3Note that this requires only local knowledge of instantaneous CSI; there is
no need for network-wide knowledge of instantaneous CSI.
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x1, · · · , xn → {0, 1} be an inequality that defines an event of
interest as a polytope in Rn. We will concentrate on the event
of on-time delivery, written E :

P
i xi ≤ t for some deadline

t > 0, and assume that each Xi has nonvanishing support on a
continuous subset of the nonnegative reals, so that E is a closed
set on Rn ≥ 0; these conditions are fulfilled for the distribution
Eq. (3) as well as for many other practically relevant distribu-
tions.

Consider the nonlinear probability map to the unit hy-
percube P : Rn → [0, 1]n defined by taking any
realization (x1, x2, · · · , xi) to the vector of probabilities
(F1(x1), F2(x2), · · · , Fn(xn)), where Fi(x)

.
= Pr(Xi ≤ xi).

Applying map P to the event polytope E yields a hypercube
subregion P (E) whose boundary P (∂E) is typically curved.
The significance of the map P is that probability is uniform in
the hypercube, therefore the content (=hypervolume) of P (E)
is precisely the probability of event E, that is, Pr(E) =
vol P (E) is the quantity we are optimizing. For most distribu-
tions, we cannot evaluate the integral giving this volume, thus
we seek distribution-independent bounds on Pr(E). To that
end we study the following property:

Definition 1: When P (E) is a convex set, E is a convex
event w.r.t. variables X1,X2, · · · .
P (E) is convex if (but not only if) E is convex in Rn and each
CDF (cumulative distribution function) Pr(Xi ≤ t), t ≥ 0 is
concave. A concave CDF implies a nonincreasing probability
density function (PDF); this may be too restrictive. We will
begin with concave CDFs but ultimately develop bounds for a
much broader class of densities—those having nonincreasing
right tails.

Knowing only that E is a convex event and the location of a
point on the boundary P (∂E), we construct a bound by tightly
fitting a diamond-shaped polytope inside P (E). Figure 1 visu-
alizes the bound for a two-variable event. Let us initially as-
sume that each CDF has support on (0, t] ∈ R+, so that the
boundary makes contact with each hypercube vertex e1, · · · , en
that adjoins the origin. Choose some point p ∈ P (∂E) on the
boundary; initially let us take p = p1, the point where the ray
1 = (1, 1, · · · , 1) from the origin meets the boundary.

Lemma 1: (SIMPLE DIAMOND BOUND) Pr(E) ≥ 1
d!(1 +

q
√
d) where d ≤ n is the number of random variables particip-

ating the event and q = pd1/2 − 1.
Proof: see Appendix VI-A.

The diamond polytope consists of two simplices spanning
the points {0, e1, · · · , en,p} and conjoined at a shared sub-
simplex spanning {e1, · · · , en}. In practice, P (E) may not
reach the hypercube corners e1, e2, · · · because for some vari-
ables, Pr(Xi > t) > 0. E.g., if the channel gain on a specific
link is too low, then transmission over this single link already
exceeds the admissible delay time. Let mi

.
= maxx Pr(Xi ≤

x|E) be the CDF value of the largest realization of Xi allowed
by event E. The lower bound for the probability of on-time
delivery is generalized as follows:

Lemma 2: (DIAMOND BOUND, CONVEX DISTRIBUTIONS)
Pr(E) ≥

Q
imi

d! (1 + q
qP

im
−2
i ) where d ≤ n is the

number of random variables participating the event; q =
h(p, 1), (z,−1)i /(kpk · kzk) with zi = m−1i ; and any p ∈
P (∂E) ⊂ [0, 1]n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E:X+Y≤ t

vol A ≤ vol E = Pr(X+Y≤ t)≤ vol B

Pr(X≤ z)

P
r(

Y
≤ 

z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E:X+Y≤ t

vol A ≤ vol E = Pr(X+Y≤ t)≤ vol B

Pr(X≤ z)

P
r(

Y
≤ 

z)

Fig. 1. A schematic of lower and upper diamond bounds on two-variable
events. The area under the curve is the probability of the event. At left the
event is convex; at right, near-convex, for which the bounds are adjusted.

Proof: See appendix VI-B.
In many routing problems the natural distribution functions do
not yield a convex event. We extend the lower bound to such
events by identifying a convex subvolume of P (E).

Theorem 1: (DIAMOND BOUND, GENERAL DISTRIBU-
TIONS) Let cj = 0 for concave Fj ; otherwise cj =
maxx|F 00

j (x)=0,Pr(Xj≤x|E)>0 x, the largest sample value where
the CDF of Xj inflects and E is feasible. If E is convex in Rn,
each density function fi(x) = F 0i (x) is nonincreasing on the
right, and ∀ipi ≥ ci, then the convex bound holds with mi set
to the probability of the largest feasible value of Xi that satis-
fies E when Xj = cj ,Xk = ck, · · · . E.g., for E :

P
i xi ≤ t,

mi = maxPr(Xi + (maxj 6=i cj) ≤ t).
Proof: See Appendix VI-C.

B. Routing algorithm
In stochastic routing on a graph G = (V, E), we have a com-

binatorial number of paths; for each source-target path P ⊆ E
we are interested in the event of on-time arrival, which we write
E|P :

P
i∈P Xi ≤ t. Our goal is to find the pathP maximizing

the probability of this event Pr(E|P) = vol P (E|P). For most
distributions this problem is NP-hard and sometimes inapprox-
imable[15][16]; for the PDF in Eq. (3) it can even be challen-
ging to numerically approximate vol P (E|P) for a single path
P . However, with modest computation we can find a path that
maximizes the lower bound given above. To do so, we search
along a vector v ∈ [0, 1]|E| for a point p on the boundary of the
union of all events, P (∂(

S
Q∈st-paths(G)E|Q)):

1) Choose a bisection point p along vector v.
2) For each edge random variable Xi, calculate the sample

value xi = F−1i (pi) that satisfies Pr(Xi ≤ xi) = pi.
3) Find the shortest path P on G w.r.t. x1, x2, · · · , xn.
4) If

P
i∈P xi > t + �, repeat bisecting closer to 0; ifP

i∈P xi < t− �, repeat bisecting further from 0.
This bisection search terminates after no more than log 1/� in-
stances of Dijkstra shortest path with a path whose realization
lies on the boundary of E with precision � ≥ 0.

C. Properties of the identified route
If the search vector is v = 1, then the selected path P at

p = p1 is robust to the random resampling of any single edge
length in the following sense:

Proposition 1: Under single-edge resampling, the selected
path is more likely to be in E than any other path.
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Proof: See Appendix VI-D
No such guarantee is possible if we re-draw two or more edge

lengths, because even though Pr(Xi ≤ xi) = p and Pr(Xj ≤
xj) = p, it is possible that Pr(Xi +Xj ≤ xi + xj) À p due
to nonlinearity of the distribution functions. The reader may
intuit that this phenomenum is likely to favor the selected path
more than any other path, and we support this intuition with the
following result.

Theorem 2: The path selected at p maximizes the convex
lower bound on probability of on-time arrival.

Proof: See Appendix VI-E

D. Remarks
The algorithm uses quantiles as a proxy for the delay dis-

tributions, and searches for the best set of quantiles for the
routing-under-a-deadline task. The following discussion gives
some mathematical intuition why equiprobable quantiles (v =
1) are the most informative:

Definition 2: The event shadow s(E,Q,q) of path Q at
point q is the set of all points q0 ∈ P (E|Q) with qi ≥ q0i.
The diamond bound is itself computed at p for P and in the
shadow of p for all other paths. It is possible that the diamond
bound could favor some other path Q if it were computed at
some other point r on Q’s event envelope that is outside the
shadow of p (i.e., r ∈ P (∂E|Q)\s(E,Q,q)). We argue that
this outcome grows increasingly unlikely with graph size: The
convexity of E implies that this point r must have some ordin-
ates ri, rj , · · · that are substantially smaller than p, and there-
fore that much of the probability mass of P (E|Q) is associ-
ated with unusually lucky draws from some of the edges in Q.
E.g., the threshold behavior of path Q is dominated by some
edges with unusually broad distribution functions; lucky draws
on these edges makes path Q suitable regardless of outcomes
on its other edges, which in turn must have unusually narrow
distribution functions. I.e., the path has mostly atypical delay
distributions. However, if we have a smooth unimodal prior
probability on the shape of delay distributions, the probabil-
ity that such a path exists decays rapidly as we consider larger
graphs.

E. Upper bounds
Here we sketch the construction of an upper bound on the

probability of a convex event: A trivial hyperrectangle upper
bound Pr(E) ≤

Q
imi arises from the observation ∀i0 ≤

Pr(Xi < t) ≤ mi. This bound can be sharpened shaving the
far corner of the hyperrectangle with a cut through p ∈ P (∂E)
along the tangent space spanned by the derivatives of P (∂E)
at p. For our event, the d − 1 vectors needed to determine
the span can be calculated as d

dp1
Fj(xj − (F−11 (p1) − x1)) =

−1
f1(F

−1
1 (p1))

fj(xj − (F−11 (p1)− x1)) = −fj(xj)/f1(x1) with
fj(xj) = F 0j(xj) being the PDF and CDF of Xj at xj . The
cut volume and upper bound then follow from simple linear al-
gebra.

We offer the following informal argument why the path P
selected by our algorithm can also be expected to maximize this
upper bound: For any alternate path Q and a location q in the

event shadow of p, we make two observations about the cutting
hyperplane in the bound:

1) Since q is closer to 0 than p, all else being equal, the
hyperplane through q will cut off a larger volume.

2) Since some of the CDF values are reduced at q, by
concavity of CDFs the corresponding PDF values are
increased and thus, ceteris paribus, the derivatives of
P (∂E|Q) at q are more widely dispersed in value. This
makes tangent space of P (∂E) at q less orthogonal to 1,
which also increases the cut volume.

IV. SIMULATION RESULTS

For experimental validation, we compared the output of
our algorithm against exhaustive search (where possible), and
against a simple-minded approach, namely shortest-path for av-
erage CSI. One natural choice, average transmission time, is
infeasible because our subexponentially distributed delay dis-
tributions have infinite means. Another natural choice of CSI
cost statistic would be mean propagation attenuation, however
we know this yields poor paths because it under-penalizes un-
reliable links. Median transmission time is a more competitive
shortest-path statistic; it coincides with the first step of our al-
gorithm and therefore allows us to assess the utility of finding
the event boundary.

We performed several thousand trials comparing our al-
gorithm against shortest path in a network with random place-
ment of nodes. The transmitter is located at (0,0), and the re-
ceiver at (1,1). A set of 12 random nodes was placed at random
in the unit square [0, 1]×[0, 1]. The pathloss between two nodes
was taken to be proportional to the squared distance between
the nodes. Deadlines were chosen to be twice the transmis-
sion time that occurs when all channel gains attain their me-
dian value. In each trial we computed a route by our algorithm
and by deterministic shortest path on the median transmission
times, then sampled both paths 1000 times to estimate their
probability of on-time delivery. 4 The chosen paths differed
in > 87% of trials; of these the path chosen by our algorithm
provided better on-time probability > 94% of the time. This is
indicated by the circular dots massed above the diagonal in the
probability scatter-plot in Fig. 2. In parallel experiments, the
min-medians path is in turn almost always more successful than
the min-squared-distances path; this is indicated by the square
dots massed below the diagonal.

Results from further simulations with different settings (not
shown here due to space restrictions) indicate the following: (i)
for very small networks, where we were able to exhaustively
enumerate and sample all paths to find the path with optimal
on-time probability, our new algorithm found the true optimal
path in most cases, and found only slightly suboptimal paths
otherwise; (ii) with more stringent deadlines or low SNR links,
our algorithm becomes increasingly dominant; and (iii) for net-
works with high SNR, a large number of hops, or very generous
deadlines, the performance of deterministic routing on medians
approaches that of stochastic routing.

4It must be noted that due to the sub-exponential behavior of the probability
density function, 1000 samples may not always be sufficient to establish which
of two paths is superior.
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Fig. 2. Scatter plot comparing the probability of on-time delivery of the route
chosen by our algorithm (vertical, red circles) versus that of the best path found
by shortest path on medians (horizontal). Blue squares show medians are in
turn better than squared distances.

V. SUMMARY AND CONCLUSIONS

This paper presented a new way of routing with delay guar-
antees in wireless ad-hoc networks. Finding a middle ground
between flooding (which does not require the exchange of CSI,
but is extremely energy-inefficient) and optimum routing based
on instantaneous CSI in the network (which might require a
large overhead for route discovery and maintaince of routing
tables), we propose the use of average CSI, which has to be
updated only very rarely. Even with this reduced CSI, it is
possible to provide stochastic delay guarantees, i.e., to ensure
that messages are delivered on-time in a percentage of cases
given by the lower bound. We developed a novel, simple, yet
highly effective algorithm to identify the route that most often
fulfills the delay requirement. This algorithm is not heuristic,
but rather based on analytical proofs for lower bounds on the
success probability.

A possible alternative approach would be to allow only con-
nections between nodes such that the mean channel strength
between any pair of "connected" nodes exceeds the minimum
required for a packet of this known length to be received with
some chosen low probability of error for a chosen modulation.
Then this same modulation can be used on every hop and the
’time’ requirement becomes a ’number of hops’ requirement,
which has been studied in the literature [17]. However, this ap-
proach poses too stringent requirements on each possible link;
there are thus many situations where our algorithm (where one
fast link can compensate for the delay of another, slow, link) can
find a route that fulfills the delay guarantee while the ’number
of hops’ algorithm fails.

The discussion of the algorithm concentrated on finding
routes that give delay guarantees in Rayleigh fading channels.
As a matter of fact, the algorithm itself is much more gen-
eral and can be used in a variety of other applications. First
and foremost, it is valid for any fading distribution, like Rice,
Nakagami, etc. Since different fading distributions can occur

in practical sensor networks [18], this easy generalizability is
important. The method can also be used if the CSI is not the
true average, but just some noisy or outdated estimate—just as
long as the cumulative distribution function is known. Simil-
arly, while we used the per-link transmission delay of an ideally
coded system in our examples, the routing algorithm is not de-
pendent on this assumption.

Furthermore, it is not necessary to restrict the QoS require-
ment to transmission delay. Any convex (e.g., additive) QoS
constraints can form the basis of the algorithm. Last but not
least, the restriction that the PDFs of the edge costs have to be
independent can be lifted; details of this refinement will be re-
ported in a future paper.
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VI. APPENDIX

A. Proof of Lemma 1 in section III-A
Because P (E) is convex, it contains the convex hull of

{0, e1, · · · , ei,p}. This hull dissects into a standard simplex
on {0, e1, · · · , en} and a regular simplex on {e1, · · · , en,p}
that has been squashed along the ray 1. The ray intersects
their common facet at d−1/21 therefore the squashed sim-
plex has height q = pd1/2 − 1. The content of the stand-
ard simplex is 1/d!; the common facet is a regular simplex of
d − 1 dimensions with edge length

√
2, therefore its content is√

2d−1 ·
√
d/((d− 1)!

√
2d−1) = d

√
d/d!. Extending this pyr-

amidally to height q increases the content by factor q/d. Sum-
ming the contents give the result.

Remark 1: Consider the [0, 1]n−1 axis-aligned subspace
containing event P (E|Xk = 0). If we compute the point
qk where 1 meets this curve, then the content inside convex
hull of [e1, · · · , ek−1,qk, ek+1, · · · , en,p] lies inside P (E)
but outside the bound given above, and thus can be ad-
ded to the bound to tighten it. We can do so holding
each Xk=0, then also add the content in the convex hull of
{e1, · · · ej−1,qj , ej+1, · · · , ek−1,qk, ek+1, · · · , en,p}, etc.

B. Proof of Lemma 2 in section III-A
Using the Cayley-Menger determinant, the content of the

lower simplex is
Q

imi/d! and of the shared simplex is

(
Q

imi)d
qP

im
−2
i /d!. The formula for q is the orthogonal

distance from the shared simplex to any p (not just p = p1).

C. Proof of Theorem 1 in section III-A
Consider any two-dimensional slice through P (E) and the

axis ei, viewed with ei as the vertical axis. Because E is
convex, the curve generated by the slice through the bound-
ary P (∂E) is nonincreasing. If p can be located on this curve,
then because ∀ipi ≥ ci, the curve has a central segment gen-
erated by the right tails of distributions, which must be convex.
Project this segment onto ei. By construction, mi lies at or
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below the high end of the projection. Because the curve seg-
ment is nonincreasing and convex, any line drawn from (0,mi)
to p lies wholly in P (E). Thus any (upper) simplex with ver-
tices (m1e1, · · · ,mnen,p) lies in P (E). By symmetry of ar-
gument, if the slice also passes through ej , the line from (0,mi)
to (mj , 0) is also in P (E), implying the lower simplex is in
P (E).

D. Proof of Proposition 1 in section III-B
By construction, for any edge in the selected path, we have

probability p of remaining in E. For any other path, a new
draw must shorten the realized path length, thus the probability
of entering E is < p.

E. Proof of Theorem 2 in section III-B
Any alternative pathQ enters E by reducing some nonempty

subset of its edge lengths xi, xj , · · · , and thereby reducing the
probabilities Pr(Xi ≤ xi), Pr(Xj ≤ xj), · · · . Let q be a
vector (Pr(Xi ≤ xi), Pr(Xj ≤ xj), · · · ) of the probabilities
of Q’s realized edge lengths and let vector p0 contain the cor-
responding values in p. Recall that in the diamond bound, the
content of the regular simplex is determined by the orthogonal
distance of the sample point to the shared facet between the
simplices. Since q>p0 < p0>p0, this distance is reduced and
the regular simplex is more squashed for Q than for P , while
all other elements of the bound are conserved.
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