
Flexible, Wide-Area Storage for
Distributed Systems with WheelFS

Jeremy Stribling,
Yair Sovran, Irene Zhang, Xavid Pretzer, Yair Sovran, Irene Zhang, Xavid Pretzer,

Jinyang Li, M. Frans Kaashoek, and Robert Morris

MIT CSAIL & New York University

Wide-Area Storage: The Final Frontier

PlanetLabPlanetLab

• Apps store data on widely-spread resources
– Testbeds, Grids, data centers, etc.
– Yet there’s no universal storage layer

• What’s so hard about the wide-area?
– Failures and latency and bandwidth, oh my!

Apps Handle Wide-Area Differently

• CoralCDN prefers low delay to strong
consistency

• Google stores email near consumer
(Coral Sloppy DHT)

(Gmail’s storage layer)
• Facebook forces writes to one data center

� Each app builds its own storage layer

(Gmail’s storage layer)

(Customized MySQL/Memcached)

Problem:
No Flexible Wide-Area Storage

• Apps need control of wide-area tradeoffs
– Fast timeouts vs. consistency
– Fast writes vs. durability
– Proximity vs. availability– Proximity vs. availability

• Need a common, familiar API: File system
– Easy to program, reuse existing apps

• No existing DFS allows such control

Solution: Semantic Cues

• Small set of app-specified controls
• Correspond to wide-area challenges:

– EventualConsistency: relax consistency
– RepLevel=N: control number of replicas– RepLevel=N: control number of replicas
– Site=site: control data placement

• Allow apps to specify on per-file basis
– /fs/.EventualConsistency/file

Contribution: WheelFS

• Wide-area file system
• Apps embed cues directly in pathnames
• Many apps can reuse existing software
• Multi-platform prototype w/ several apps

• Wide-area file system
• Apps embed cues directly in pathnames
• Many apps can reuse existing software
• Multi-platform prototype w/ several apps• Multi-platform prototype w/ several apps• Multi-platform prototype w/ several apps

Data stored in WheelFS

WheelFS Design Overview

Distributed Application

WheelFS

FUSE
WheelFS client nodes

WheelFS
configuration

Service
(Paxos + RSM)

WheelFS
client

software

WheelFS client nodes

WheelFS storage nodes

Files and directories are
spread across storage nodes

WheelFS Default Operation

• Files have a primary and two replicas
– A file’s primary is its creator

• Clients can cache files
– Lease-based invalidation protocol– Lease-based invalidation protocol

• Strict close-to-open consistency
– All operations serialized through the primary

Enforcing Close-to-Open Consistency

v2

By default, failing to reach the
primary blocks the operation to

offer close-to-open consistency
in the face of partitions

v2

v2

Read
562

Eventually, the configuration
service decides to promote a

backup to be primary

Write
file

(backup)

(backup)

Wide-Area Challenges

• Transient failures are common
– Fast timeouts vs. consistency

• High latency
– Fast writes vs. durability

• Low wide-area bandwidth
– Proximity vs. availability

Only applications can make these tradeoffs

Semantic Cues Gives Apps Control

• Apps want to control consistency, data
placement ...

• How? Embed cues in path names

� Flexible and minimal interface change

/wfs/cache/a/b/.cue/foo/wfs/cache/a/b/.EventualConsistency/foo/wfs/cache/a/b/foo

Semantic Cue Details
• Cues can apply to directory subtrees

Cues apply recursively over
an entire subtree of files

/wfs/cache/.EventualConsistency/a/b/foo

• Multiple cues can be in effect at once

• Assume developer applies cues sensibly

/wfs/cache/.EventualConsistency/.RepLevel=2/a/b/foo

Both cues apply to
the entire subtree

A Few WheelFS Cues

Name Purpose

RepLevel=
(permanent)

How many replicas of this file should be
maintained

HotSpot
(transient)

This file will be read simultaneously by
many nodes, so use p2p caching

Large reads

Durability

Site=
(permanent)

Hint which group of nodes a file
should be stored

Hint about data
placement

Cues designed to match wide-area challenges

(transient) many nodes, so use p2p caching

Eventual-
Consistency
(trans/perm)

Control whether reads
must see fresh data, and whether writes

must be serialized
Consistency

Eventual Consistency: Reads

• Read latest version of the file you can find quickly
• In a given time limit (.MaxTime=)

v2

v2

v2

Read
file

(cached)
(backup)

(backup)

Write
file

Eventual Consistency: Writes

• Write to any replica of the file

v2v3

Reconciling divergent replicas:

Directories Files
• Merge replicas into single • Choose one of the replicas to

(backup)

v2

Write
file

v3v3

Create new version at backup

Background process
will merge divergent replicas

(No application involvement)

• Merge replicas into single
directory by taking union of
entries
� Tradeoff: May lose some
unlinks

• Choose one of the replicas to
win

�Tradeoff: May lose some
writes

Example Use of Cues:
Cooperative Web Cache (CWC)

Apache
Caching

Proxy

Apache
Caching

Proxy

Apache
Caching

Proxy

Apache
Caching

Proxy If $url exists in cache dir
read $url from WheelFS

Blocks under failure with
default strong consistency

read $url from WheelFS
else

get page from web server
store page in WheelFS

One line change in Apache config file: /wfs/cache/$URL

.EventualConsistency

Example Use of Cues: CWC
• Apache proxy handles potentially stale files well

– The freshness of cached web pages can be
determined from saved HTTP headers

Cache dir: /wfs/cache/ /.HotSpot/.MaxTime=200

Read a cached file
even when the
corresponding

primary cannot be
contacted

Write the file data
anywhere even

when the
corresponding

primary cannot be
contacted

Tells WheelFS to
read data from

the nearest client
cache it can find

Reads only
block for 200
ms; after that,

fall back to
origin server

WheelFS Implementation

• Runs on Linux, MacOS, and FreeBSD
• User-level file system using FUSE
• 20K+ lines of C++
• Unix ACL support, network coordinates• Unix ACL support, network coordinates
• Deployed on PlanetLab and Emulab

Applications Evaluation

App Cues used
Lines of

code/configuration
written or changed

Cooperative
Web Cache

.EventualConsistency, .MaxTime,
.HotSpot

1

All-Pairs-Pings
.EventualConsistency, .MaxTime,

.HotSpot, .WholeFile
13

.HotSpot, .WholeFile

Distributed Mail
.EventualConsistency, .Site,

.RepLevel, .RepSites,
.KeepTogether

4

File distribution .WholeFile, .HotSpot N/A

Distributed
make

.EventualConsistency (for objects),
.Strict (for source), .MaxTime

10

Performance Questions

1. Does WheelFS scale better than a single-
server DFS?

2. Can WheelFS apps achieve performance
comparable to apps w/ specialized storage?comparable to apps w/ specialized storage?

3. Do semantic cues improve application
performance?

WheelFS Out-scales NFS on PlanetLab

15

20

25

Median

1MB read

Working set of files
exceeds NFS server’s

buffer cache

0

5

10

0 50 100 150 200 250 300

1MB read

latency

(seconds)

Number of concurrent clients

WheelFS

NFS

PlanetLab
vs.

dedicated MIT server

CWC Evaluation

• 40 PlanetLab nodes as Web proxies
• 40 PlanetLab nodes as clients
• Web server

– 400 Kbps link– 400 Kbps link
– 100 unique 41 KB pages

• Each client downloads random pages
– (Same workload as in CoralCDN paper)

• CoralCDN vs. WheelFS + Apache

WheelFS Achieves Same Rate As CoralCDN

100

1000

Total

reqs/sec

served WheelFS

CoralCDN ramps up
more quickly due to
special optimizations

1

10

0 200 400 600 800 1000

served

(log)

Time (seconds)

WheelFS

CoralCDN

. . . but WheelFS soon
achieves similar

performance

Total reqs/unique page: > 32,000
Origin reqs/unique page: 1.5 (CoralCDN) 2.6 (WheelFS)

CWC Failure Evaluation

• 15 proxies at 5 wide-area sites on Emulab
• 1 client per site
• Each minute, one site offline for 30 secs

– Data primaries at site unavailable– Data primaries at site unavailable

• Eventual vs. strict consistency

EC Improves Performance
Under Failures

100

1000

Total

reqs/sec

EventualConsistency
allows nodes to use

cached version when
primary is unavailable

1

10

200 300 400 500 600 700

reqs/sec

served

(log)

Time (seconds)

WheelFS - Eventual

WheelFS - Strict

Related File Systems

• Single-server FS: NFS, AFS, SFS
• Cluster FS: Farsite, GFS, xFS, Ceph
• Wide-area FS: Shark, CFS, JetFile
• Grid: LegionFS, GridFTP, IBP• Grid: LegionFS, GridFTP, IBP

• WheelFS gives applications control over
wide-area tradeoffs

Storage Systems with
Configurable Consistency

• PNUTS [VLDB ‘08]
– Yahoo!’s distributed, wide-area database

• PADS [See next talk]• PADS [See next talk]
– Flexible toolkit for creating new storage layers

• WheelFS offers broad range of controls in
the context of a single file system

Conclusion

• Storage must let apps control data behavior
• Small set of semantic cues to allow control

– Placement, Durability, Large reads and
ConsistencyConsistency

• WheelFS:
– Wide-area file system with semantic cues
– Allows quick prototyping of distributed apps

http://pdos.csail.mit.edu/wheelfs

