
Privacy-Preserving Browser-Side Scripting With BFlow

Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris

Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory

Abstract
Some web sites provide interactive extensions using browser
scripts, often without inspecting the scripts to verify that they
are benign and bug-free. Others handle users’ confidential
data and display it via the browser. Such new features con-
tribute to the power of online services, but their combination
would allow attackers to steal confidential data. This paper
presents BFlow, a security system that uses information flow
control to allow the combination while preventing attacks on
data confidentiality.

BFlow allows untrusted JavaScript to compute with, ren-
der, and store confidential data, while preventing leaks of
that data. BFlow tracks confidential data as it flows within
the browser, between scripts on a page and between scripts
and web servers. Using these observations and assistance
from participating web servers, BFlow prevents scripts that
have seen confidential data from leaking it, all without dis-
rupting the JavaScript communication techniques used in
complex web pages. To achieve these ends, BFlow augments
browsers with a new “protection zone” abstraction.

We have implemented a BFlow browser reference mon-
itor and server support. To evaluate BFlow’s confidentiality
protection and flexibility, we have built a BFlow-protected
blog that supports Blogger’s third party JavaScript exten-
sions. BFlow is compatible with every legitimate Blogger
extension that we have found, yet it prevents malicious ex-
tensions from leaking confidential data.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection; H.3.5 [Online Information
Services]: Web-based services

General Terms Design, Security

Keywords information flow control, labels, web platforms,
JavaScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction

Three important trends in Internet-based computing have
emerged in recent years. First, web sites are increasingly
hosting sensitive user data and applications; hosted e-mail
has been joined by hosted spreadsheets, confidential blogs,
etc. Second, large swathes of web user interface code now
run in the browser, as JavaScript and other browser script-
ing languages. Third, many web sites use JavaScript that
they might not fully understand, including large imported
libraries and even extension scripts written by arbitrary third
party programmers. These extensions can use server-side
APIs to access and manipulate users’ server-based data, giv-
ing rise to application-like third-party extensions on “plat-
form” sites such as Facebook [Facebook 2009] and Blog-
ger [Blogger 2009].

The combination of third-party browser scripts and sensi-
tive user data raises the possibility of scripts stealing confi-
dential data. For this reason, today’s web applications that
value user privacy must forbid browser script extensions,
or refuse to reveal sensitive user data to extensions. These
approaches cut off useful behavior, undermining the value
of extensibility. For example, web applications like Gmail
would benefit from third party JavaScript extensions, but
confidentiality problems make them difficult to support. As
a substitute, Gmail users modify their browsers to do things
like optimize Gmail’s UI for particular mobile devices and
alter the way Gmail renders email [Firefox 2009].1

Existing web sites that support extensions tend to do so
with less sensitive, but still confidential data. For example,
the Blogger web site hosts confidential blogs, yet permits
users to install third-party JavaScript extensions, that they
might not fully understand, on their blogs. These extensions
can read confidential data, compute on it, and display it to
the user (which is reasonable by itself), but they can also
communicate any information they read to outside parties
(which can violate the user’s privacy). Part of the underlying
problem is that the browser security policy gives all scripts
that come from a given web site full privileges with respect
to that site.

1 The ideas in this paper may also apply to software-as-a-service sites,
though we have not pursued this idea.

Recent work [Wang 2007, Miller 2008, Jim 2007] pro-
poses improvements to today’s browser security policy such
as finer-grained separation of privileges between different
parts of the browser. But these solutions still force users or
developers to make up-front decisions as to whether or not to
trust third-party code with confidential data. Mistakenly de-
ciding “no” inhibits extensibility; mistakenly deciding “yes”
invites data theft.

This paper describes BFlow, a new browser security sys-
tem. BFlow lets browser scripts compute with confidential
data while restricting their ability to reveal that data. BFlow
uses a reference monitor in the browser to enforce infor-
mation flow control (IFC), observing the communication of
each script with other scripts and with web sites. These ob-
servations help BFlow decide whether each script has seen
confidential data (whether directly or transitively through
another script) and from what site that data came. The BFlow
reference monitor uses the tracking information to restrict
how data is revealed: if a script has seen confidential data,
it can only communicate with the site whence the confiden-
tial data came unless that site explicitly permits communi-
cation with other servers. BFlow places few new restrictions
on scripts that have not been exposed to confidential data.
To take advantage of BFlow, a web site must cooperate by
marking outgoing confidential data with security metadata
and recording the confidentiality of incoming data.

The challenges in designing BFlow differ from those
solved by operating system IFC systems [Bell 1976, McIlroy
1992, Dep 1985, Efstathopoulos 2005] because the browser
has somewhat unusual notions of the principals that own data
(web sites), of the natural code unit at which to apply IFC
(the frame), and of the special flows of information that must
be supported (among frames and to web servers).

We have implemented a prototype BFlow browser ref-
erence monitor as a Firefox plug-in. We have also imple-
mented the server part of BFlow as a gateway layer that sits
between an Apache web server and the web site’s applica-
tion logic. These implementations are intended to be easy to
deploy: the Firefox plug-in is easy to install, and the BFlow
reference monitor supports the full JavaScript language so
that most scripts run with no changes.

To evaluate BFlow’s privacy protection and flexibility, we
implemented two web sites that incorporate third party Java-
Script: a blog compatible with Blogger’s third party exten-
sions, and a social networking site that implements common
application features in untrusted JavaScript. The blog ex-
ample shows that many existing scripts will work with few
modifications and that malicious JavaScript that leaks con-
fidential data in Blogger does not leak within BFlow. The
social network example shows that BFlow supports a wide
range of third party functionality.

The contributions of this work are 1) a new technique that
(when properly used) prevents JavaScript from stealing con-
fidential data, and for example prevents all “cross-site script-

ing” attacks whose aim is to steal data; 2) a new information
flow control model for the browser that is compatible with
JavaScript’s runtime and communication environment, and
3) an easy-to-deploy implementation.

2. Background: JavaScript
Web sites use in-browser JavaScript to provide high-quality
user interfaces. This section briefly reviews what JavaScript
can do within a browser, focusing on communication.

A browser consists of one or more frames, each contain-
ing a separate HTML document and JavaScript interpreter.
Browser frames can contain sub-frames using the frame and
iframe HTML directives. Each browser window or tab is
a top-level frame, each frame that embeds a sub-frame is a
parent, and each sub-frame is the child of its parent.

The browser represents the displayed document in each
frame as a data structure called the Document Object Model
(DOM). JavaScript code is allowed to read and modify the
DOM of any frame from the same origin server as the code.2

Different JavaScript code from the same origin can com-
municate via modification to each other’s DOMs, and Java-
Script can cause communication with any web server by
modifying the DOM to fetch a page or image from that
server.

The restriction that JavaScript only access DOMs from
the same origin is called the same-origin policy (SOP). The
SOP also only allows a script to send AJAX requests to its
origin server. The high-level goal of the SOP is to guard
the operation of each web site and its JavaScript from in-
terference by other sites’ JavaScript. The SOP does not re-
strict JavaScript from interacting with different-origin sites
in a number of ways which would be unlikely to interfere
with their proper operation. For example, a script can mod-
ify its frame’s document to fetch an image from any web
site, which allows the script to communicate with the site
through the name of the requested image. The SOP also al-
lows scripts to use JavaScript’s intra-browser channels to
send messages to listening scripts from any origin. The result
is that scripts that have access to confidential data can leak
that data to cooperating outside web sites and JavaScript.

3. Challenges
BFlow requires a stronger policy than the SOP because it
must prevent data movement even when untrusted scripts
and untrusted servers collude against the user’s wishes.
BFlow must accomplish this while maintaining support for
untrusted JavaScript extensions without encumbering de-
ployment.

3.1 Threat Model and Security

BFlow applies to web sites that both store confidential user
data and allow untrusted JavaScript to access that data. The
adversary’s goal is to read, with his own eyes, data that

2 An origin is defined as a triple: domain name, protocol, and port.

Figure 1: Malicious JavaScript reads confidential data (a) via
the DOM and (b) by exploiting vulnerable JavaScript.

Figure 2: After reading confidential data, the malicious Java-
Script leaks confidential data to an adversary via the (a) ad-
versary’s server (b) web site’s public data.

he should not be able to read according to the web site’s
stated confidentiality policy. The adversary’s capabilities are
limited to creating his own accounts on the web site, running
his own web servers, and writing JavaScript which the site
includes in pages viewed by other users. Neither the site
operators nor the users inspect the adversary’s JavaScript.

More general adversaries might have other tools at their
disposal. They might: compromise the host site; eavesdrop
on or corrupt network traffic; infect the user’s operating sys-
tem with malware; infect the user’s browser with malware;
and use social-engineering attacks like “phishing” to lure the
user or her friends into giving confidential data away. BFlow
does not defend against these attacks, and its correct opera-
tion depends on adequate defenses to them that are outside
the scope of this paper (e.g. SSL, timely application of O/S
security patches, etc.).

The ability to inject arbitrary JavaScript into a page is
quite powerful and is commonly referred to as a cross-site
scripting (XSS) vulnerability. While BFlow does not aim
to solve all attacks available through XSS, it does aim to
prevent XSS attacks from leaking confidential data.

Attack Paths: Once the adversary injects JavaScript into
the web site’s pages and a user views a page, the JavaScript
can attempt to read the confidential data displayed on the
page and leak it to the adversary.

There are two possible scenarios for reading the confi-
dential data. In the common case, the malicious JavaScript
runs in the same origin as the confidential data. This could
occur for many reasons; today, web sites incorporate large
JavaScript libraries like Scriptaculous [script.aculo.us 2009]
or Google Maps [Google 2009c] into their site’s origin and
platforms like Blogger inline completely unaudited third

party scripts. In this case, the JavaScript can read the con-
fidential data directly from the DOM as shown in Figure 1a.
In the second case, malicious JavaScript can steal data even
if there is no malicious code in the same origin as the con-
fidential data. Today’s browsers now support intra-browser
communication between scripts from different origins and
developers are already building libraries to use these chan-
nels [Ubl 2009]. If libraries like these are buggy, then mali-
cious JavaScript running in the browser from a different ori-
gin (and a different frame) could exploit their bugs to read
the confidential data as in Figure 1b.

After reading confidential data, the malicious JavaScript
can send it to a web server using an HTTP request, either to
the web site’s own server or an external server. For example,
the JavaScript can encode the data in an image name to be
fetched from a server the adversary controls (see Figure 2a).

Even if the same-origin policy applied to all types of
requests and the script could only send HTTP requests to
the web site’s server, the malicious JavaScript could leak
data via the web site’s own server. The malicious script
could craft an HTTP request that stores the confidential data
back onto the server in a public area. Since the server no
longer realizes that the data is confidential, the adversary
can read it with his own browser (see Figure 2b). Similarly,
malicious JavaScript could write confidential data into a
browser cookie and then any other code that comes from the
same domain could read the data.

3.2 Flexibility and Adoption

The second challenge is to design a system that is easy for
developers, web sites, and users to adopt.

One aspect of this challenge lies in preventing data leaks
while preserving features popular among JavaScript de-
velopers, such as eval(), communication among concur-
rent browser scripts, and communication with remote web
servers. This last JavaScript use is particularly common-
place and dangerous. Today’s browser scripts routinely load
images and data from multiple independently-administered
servers. In the context of BFlow, such requests can encode
confidential information. If one considers (as one should) a
large majority of web servers to be untrustworthy recepta-
cles for data leaks, BFlow must block requests (e.g, image
loads) to such servers by scripts privy to confidential infor-
mation. At the same time, BFlow can allow such requests
from scripts that have not seen confidential data. In sum,
BFlow should allow harmless requests to external servers,
allow requests that release information if the release is the
intention of the site owning the data, and detect and forbid
accidental or malicious releases.

The design of BFlow should also be easy for users to in-
stall, site developers to adopt, and extension developers to
adopt (in that order of priority). Some level of complexity
is inevitable, but the goal is that deployment effort should
be limited to: 1) users installing a browser plugin, 2) site
developers deciding which data on their site is confidential

Figure 3: BFlow overview. Untrusted protection zones are
shaded.

and rearranging the site’s HTML to partition data by confi-
dentiality constraints, and 3) third-party developers design-
ing extensions that handle confidential data to live within
BFlow’s communication restrictions.

4. Design
The goal of BFlow is to enforce two properties on how a
browser handles data. First, if confidential data arrives from
a web site, only the human user and that origin web site
should see any information derived from the data unless the
site specifically allows it to go to another web site. Second, if
the browser sends information derived from confidential data
to the origin web site, the information must be marked as
confidential unless the site specifically allows the removal of
the confidentiality marking. The main tension in the BFlow
design is the enforcement of these properties in a way that is
compatible with how developers use JavaScript in complex
web pages.

In outline, the BFlow design is as follows. The BFlow
browser reference monitor watches how data flows into, out
of, and within the browser. A BFlow-aware server sends a
label along with data it sends to the browser to tell the refer-
ence monitor whether the data is confidential. The reference
monitor uses a form of information flow control [Denning
1976] to enforce a confidentiality policy, tracking what data
within the browser might be derived from confidential data.
Each browser script runs in a browser frame, and frames
are grouped into protection zones. BFlow tracks data at the
granularity of a protection zone (see Figure 3). When data
is about to leave the browser via the network, the reference
monitor enforces a safety property on the data’s label; if the
data is going to its origin web site, the reference monitor in-
cludes the label; otherwise, if the label indicates the data is
confidential, the reference monitor forbids its release unless
an explicit declassification exception applies.

4.1 Information Flow Control

The BFlow reference monitor’s information flow control
system keeps track of what categories of confidential data
the JavaScript in each protection zone may have seen. The
reference monitor (RM) maintains a label for each zone. A
label is a set of tags. A tag is an opaque token supplied by
a server that indicates a particular category of confidential
data. The meaning of a zone having a label containing a tag

t is “the JavaScript or HTML in this zone may have observed
information derived from data with confidentiality category
t.” A label with multiple tags indicates that the zone may
have observed data in multiple confidentiality categories.

To ensure that a zone’s label reflects the categories of con-
fidential data it has seen, the RM enforces some rules relat-
ing to communication across zone boundaries. The effect of
the rules is that, if information is to flow from zone S to zone
R, R’s label must be a superset of S’s. In the special case of
data flowing from a server to a zone, the zone’s label must be
a superset of the label provided with the data. Table 1 sum-
marizes this and BFlow’s other IFC rules described below.

A zone explicitly asks to change its own label and speci-
fies which tags to add; BFlow does not automatically change
zone R’s label in response to the data R receives. BFlow
always permits a zone to add any tag to its label. This is
safe because the communication rules described above get
strictly more restrictive as the sender’s label grows. In prac-
tice, BFlow adds some further restrictions which we describe
in Section 4.2. The RM imposes the IFC rules inside user u’s
browser to prevent buggy or malicious scripts from leaking
u’s data. At the same time, it is the server’s responsibility to
avoid sending data to u’s browser that u is not permitted to
read because u could have modified her browser to extract
all the data available to it.

The ultimate source of each tag is a particular BFlow-
aware web site. The browser RM internally adds the source
server identity to each tag so that two tags from different
servers are always unique. In typical use, a zone’s label will
either be empty (indicating that the zone has seen no confi-
dential data) or contain just one tag. A label might contain
multiple tags if a zone has consulted multiple categories of
confidential data. A zone’s label cannot contain tags from
different web sites because it would violate the flow invari-
ant described in Section 4.2

A web site decides what its tags mean. A typical web site
might associate a different tag with each user, or a tag with
each category of confidential data a user owns. For example,
a web site might store both a confidential photo album and
a confidential blog for user Alice, and associate a different
tag with each kind of data. Then, if the site sends blog data
to Alice’s browser, and some JavaScript that examined the
data communicates with the site, the site will know that the
communication (and any resulting stored data) should have
the same tag as Alice’s confidential blog.

4.2 Protection Zones

One of the challenges in designing an information flow
model for JavaScript comes from how developers use Java-
Script today. Often, developers will construct web pages out
of many sub-frames, each containing its own JavaScript.
Furthermore, within a single page different sub-frames may
have different purposes. For example, a top-level page may
contain a chat tool and an email tool, each contained in its
own individual sub-frame. Each of those tools may in turn

Sender Receiver Default Rule Exception

Script in trusted zone Any Allow N/A

Script in zone S, frame F , from
server W

Script in W ’s trusted zone Allow N/A
Script in zone S Allow N/A
Script in zone R, sub-frame of F LS ⊆ LR (always true) N/A
Script in zone R, not sub-frame of F LS ⊆ LR Trusted zone proxy.
Source server of W Allow N/A
External server E LS = {} LS ⊆DE

Source server W sending data
with label L

Script in W ’s trusted zone Allow N/A
Script in zone R L⊆ LR None

Table 1: Default IFC communication rules and declassification exceptions; zones S and R are untrusted. The prototype
implements these rules for communication through postMessageBF, the FID channel and HTTP requests, but it is more
restrictive than these rules for shared DOM variables and cookie communication across zones.

contain its own sub-frames. For example, the chat tool may
use two separate sub-frames, one for showing messages and
one for data input.

Existing multi-frame modules like the chat tool typically
read shared variables and call functions across frame bound-
aries. Modules expect these features to be reliable, so BFlow
should accommodate this behavior; if one sub-frame in the
module reads confidential data, then it should still be able to
communicate with the other frames in the module without
excessive coordination. BFlow addresses this challenge by
applying IFC at the granularity of a protection zone.

A protection zone is a group of one or more browser
frames, including their DOMs and the JavaScript running
inside of them, plus its own set of browser cookies. All
the scripts and data within a zone share a common label.
Grouping frames into zones gives developers an easy way to
modularize their scripts. Once the scripts are in a common
zone, they can communicate with each other regardless of
any label changes, even if a script in one of many sub-frames
changes the zone’s label unilaterally.

A web site also has a special trusted zone which always
has an empty zone label; JavaScript running in the trusted
zone can bypass BFlow’s browser constraints. A web site
uses the trusted zone in cases where confidential data is
allowed to leave the system by a browser script, but such
scripts must be carefully inspected.

To create a new zone, JavaScript in an existing zone re-
quests a new zone id from BFlow and then loads a document
from the server (specifying the new zone id) into one of the
zone’s existing frames. When the HTTP response arrives,
the RM recognizes that the zone id is new, and creates its lo-
cal representation of the zone. However, not all frames have
their own zone; when a parent creates a sub-frame, by de-
fault the RM places the sub-frame in the same zone as the
parent as shown by Z1 in Figure 4.

Flow Invariant: BFlow maintains a flow invariant over the
browser’s frames and zones: first, the browser’s top level
frame must be in the trusted zone and all its sub-frames
must be able to legally send messages to the top level frame.
Second, if a parent frame P has child frames Ci, then the

Figure 4: Web page frame hierarchy with zones and labels.
Each box is a frame.

P must be able to send messages to each of its children
legally. More specifically, if P has label LP and P’s children
have labels LCi , then ∀i,LP ⊆ LCi . This invariant must hold
regardless of what zone each frame is a member of. The
BFlow RM preserves the flow invariant by checking the
target frame F and target zone Z before changing a zone’s
label.

When a zone Z changes its label, all other scripts running
in Z will have the new label even if they are running in other
frames; no zone other than Z will experience a label change.
However, adding t to LZ may permit another zone ZP to add
t to its label because of the invariant, if adding t to LZ means
all of ZP’s children now contain t.

Maintaining the invariant slightly limits the kinds of
frame hierarchies possible: an untrusted frame cannot con-
tain tags from different web sites and a parent frame with
LP = {t} cannot contain a child frame with LC = {}, but it
ensures that BFlow can support existing methods of Java-
Script communication described in Section 4.3.

4.3 Controlling Intra-browser Communication

Tracking the flow of confidential data between scripts within
the browser is critical to preventing leaks because BFlow
can only prevent a script from leaking data if it knows what
data the script has seen. This section describes which chan-
nels are available in BFlow between scripts in the same
zone and in different zones. We focus on the Firefox 3.0

browser in which JavaScript has four techniques to com-
municate between scripts (other browsers may have other
techniques). They are DOM variables, browser cookies, the
postMessage channel, and the fragment-ID (FID) channel.

Within One Zone: BFlow need not restrict communication
between two scripts in the same zone, since all of the Java-
Script, frame DOMs, and cookies within a zone share the
same zone label. It is important that BFlow accommodates
scripts from different frames that read and write each other’s
DOM variables, since many sites have scripts that use that
feature.

Between Two Zones: Since two scripts in different zones
can have different labels, BFlow must restrict communica-
tion between two such scripts according to the IFC rules
shown in Table 1. It does so through a combination of uncon-
ditionally forbidding some operations between scripts from
different zones, and allowing other operations only when the
zone labels allow.

Although today’s browsers allow scripts in the same ori-
gin to read and write each other’s DOMs, BFlow uncondi-
tionally forbids JavaScript in two different zones from read-
ing or writing each other’s DOM variables or cookies. This
is a conservative restriction due to our implementation and
the only restriction BFlow places on code that has not seen
confidential data. A better implementation would allow a
script in zone S to write to variables and cookies in zone R if
R’s label were a superset of S’s label.

Instead of using shared DOM variables and cookies,
BFlow allows scripts in different zones to send explicit
messages to one another using an API function called
postMessageBF. To preserve the IFC rules, the RM only
delivers the message if the sender’s label LS is a subset of the
receiver’s label LR; if not, it will drop the message. BFlow’s
postMessageBF replaces the postMessage API found in
HTML5 because postMessage does not enforce the IFC
rules.

The fourth intra-zone communication method is the FID
channel which is an artifact of a script’s ability to set the
location of both its sub-frames and the top level frame.
Setting the location of frame F communicates data to frame
F [Barth 2008]. BFlow does not specifically restrict the FID
channel; instead, BFlow ensures that any use of the FID
channel is legal according to the IFC rules in Table 1 because
BFlow preserves the flow invariant. Without the invariant, a
sub-frame P with label LP = {t} that has read confidential
data could leak it to a child frame C with LC = {} that does
not have the proper label, i.e. LP �⊆ LC.

These IFC rules alone might be too strict for an untrusted
script that handles both confidential and public data, and
also needs a way to reveal the public data. For example,
an untrusted script might need to read a user’s confidential
email address with label L = {t} and also need to save
public data with L = {} to the server. BFlow supports this
using an exception to the strict IFC rules called browser

declassification. BFlow permits a script running in a zone
from server W to send messages to scripts in the trusted zone
of server W and vice-versa, so the untrusted script with label
LR = {} can request the email address from the trusted script
and the trusted script can respond with the email address
despite R’s label if the site developers allow it to.

4.4 Controlling Browser-Server Communication

In addition to data flowing within the browser, data can also
flow between the browser and web servers in HTTP requests
and responses. To track these flows, the BFlow reference
monitor interposes on requests sent out by the browser and
on responses that arrive at the browser. When handling an
HTTP request from a zone that has seen confidential data
from server W , BFlow treats the source server W differently
from any other external server Ei. Since W sent the confi-
dential data in the first place, BFlow can safely send HTTP
requests containing the confidential data back to W . Sending
to any other server Ei requires a declassification exception,
whether Ei is BFlow aware or not.

Source Server Protocol: For communication between the
browser and the source server, the BFlow RM and the server
include labels in each HTTP request and response. The
server labels responses so that the browser RM will know
what label to apply to each zone. Similarly, the browser RM
labels requests so that the server will know what data is
confidential otherwise, attacks like that shown in Figure 2b
might succeed.

When a browser script makes an HTTP request, the
BFlow RM sets the label of the request equal to the script’s
zone label, i.e. Lreq = Lzone. Labeling the request accord-
ing to the script’s label ensures that the server will know
what confidential data the request may contain. If the re-
quest causes the server to store data, the server should store
the label along with the data and return the label if a subse-
quent request reads it.

By default, the server’s HTTP response will have the
same label as the request (Lreq = Lresp). This ensures that
any confidential data contained in the request will propagate
to the response and the label of the zone that receives the
response will reflect the confidential data in its label. To
avoid inappropriately leaking confidential data, the server
should not use any data with tag t to generate the response
unless the response’s label will contain t.

Also, since any user’s browser can ask to add t to a
zone’s label (including users who do not have permission
to read data with tag t), before sending data with tag t to the
browser, the server first checks whether the user logged into
the browser has permission to read the data.

In addition to asking the RM directly, a script can also add
a tag t to the target zone’s label as part of an HTTP request.
This allows a parent frame to load a page into one of its sub-
frames in a different zone with a different label. It is short-
hand for first loading a script into the sub-frame, having

the sub-frame change its own label and then requesting the
additional confidential data. The server then adds t to the
response’s label Lresp = Lreq ∪{t}. This method only works
if the frame that makes the request has permission to load a
page into the target frame which implies that the requester
can send a message to the target; either the two frames are
in the same zone, or the target frame is a sub-frame of the
requester.

Propagating the information flow labels to the server and
back ensures that the client cannot leak data by bouncing it
off the server. In IFC terms, if a script in zone X tries to send
data to zone Y via an HTTP request through the server, the
RM will update Y ’s label with the server response’s label
LY ← LY ∪Lresp and therefore the communication will abide
by the IFC rule LX ⊆ LY .

External Servers: BFlow forbids communication from
scripts that have seen confidential data to external servers,
conservatively assuming that they are not trustworthy. This
applies both to image loads and to AJAX requests. The RM
permits a script to send a request to an external server if the
script has not seen confidential data.

This rule is too restrictive for some web sites. Applica-
tions such as mashups may need to request data from exter-
nal servers in a way that the request itself necessarily leaks
confidential information. In such sites, the developers can
create a request declassification rule which allows certain
kinds of confidential data to exit to certain external servers.

For example, a web site W might want to fetch the
weather forecast for a user based on the user’s postal code
even though the postal code is confidential. If W ’s devel-
opers trust the weather server E enough to reveal its users’
postal codes, then W can add a request declassification rule
that says “any data tagged with tag ti may be sent to E” and
BFlow will permit scripts that have read data with ti (but
only ti) to send HTTP requests to E . More precisely, the site
administrator would add ti to E’s declassification set DE (see
Table 1).

5. Visible Model
Developers and users must understand some aspects of
BFlow.

5.1 Developer Visible Model

Labels: An application developer must create a labeling
scheme for the application’s data, an arrangement of the ap-
plication’s HTML and scripts into frames and zones, and
plan for labeling the zones. Zone labels are usually pre-
dictable: for example, the developer knows that a certain
frame will display the user’s confidential postal address and
that its zone will always have exactly the corresponding la-
bel. This predictability prevents unexpected increases in la-
bels and surprise violations of BFlow’s rules.

How many tags a site uses and what the tags correspond
to are largely application-specific, and BFlow does not pre-

scribe any particular approach. In general, for each collec-
tion of data that some users and/or some external sites should
be able to see, but others should not, it is likely that a tag
should be associated with that data. Many sites will have a
handful of tags for each user, for example one for the user’s
contact details and one for the user’s confidential blog.

Frames: A typical BFlow web page will consist of sev-
eral frames. The top level frame will always be in the trusted
zone. It will have sub-frames, each with a zone and label,
to contain untrusted scripts. Scripts that need to see differ-
ent kinds of confidential data will be in separate zones. A
particularly common case will be separate frames that dis-
play images from external servers but handle no confiden-
tial data, and frames that handle confidential data. Existing
applications may need to re-factor their HTML in order that
scripts that handle data with different confidentiality tags are
in separate frames and zones.

As an example, a page that allows a user to edit both his
confidential phone number and his public personal profile
would contain two frames in separate zones: one containing
the phone number, and one containing the personal profile.
Because the zones are separate, the user can edit his profile
without the risk of a script reading the confidential phone
number and inserting it into his public profile.

Data that the user enters into a form field takes on the la-
bel of the zone surrounding the field. Thus, even if a frame
does not initially contain confidential data, if the frame con-
tains a form field into which the developer knows the user
may enter confidential data, the developer should put the
field in an appropriately labeled zone.

Developers can also privilege-separate large pieces of
code into a small portion running in a trusted zone and a
large portion running in an untrusted zone. The two portions
can communicate using browser declassification. For exam-
ple, the trusted portion could provide a limited API to access
external web servers.

Linking: If an untrusted page has not seen confidential
data, it can link to external web sites, but if it has seen
confidential data, it can only link to external web sites if the
destination server has a request declassification rule.

Since the top level frame in a BFlow web page must be in
the trusted zone, when an untrusted page with label L = {t}
loads a new page into the browser’s top level frame, the
BFlow does not propagate tag t to the top level frame. Since
this is equivalent to declassifying the t tag, the trusted page
should not transmit any unique data from the HTTP request
such as POST parameters to an untrusted frame unless its
label also contains t.

Confidential Data and External Servers: As described in
Section 3.2, today’s browser scripts sometimes load images
and data from external servers after seeing confidential data.

One example of this is a confidential blog page that loads
a static background image from an untrusted photo web site

E . Since the HTML contains confidential data and Java-
Script, BFlow cannot determine if the request for the image
has been influenced by confidential data or not. If the script
requested the image after computing on the confidential blog
content, the HTTP request would be leaking data to E . How-
ever, in this scenario, the image that the page is loading is
static and is not based on the confidential data. To build such
a page, the site developer can pre-declare a set of external
web documents which BFlow prefetches directly from the
external servers and then caches on the blog’s server. Since
the requests have not been influenced by confidential data,
they will not leak any data to the external servers. When the
browser loads the image, it fetches it from the blog server,
not the photo server E , thus decoupling the request made by
the browser from the request that arrives at the photo server
and protecting the blog’s confidential content.

Prefetching does not work for all web applications: a
script may not know what data it needs until after reading
confidential data, or the potentially-needed data may be too
large to prefetch. For example, a mashup script that displays
a user’s location on an externally-fetched map will not know
what map images to fetch until after it reads the confiden-
tial address. In this type of mashup, BFlow cannot protect
the privacy of the addresses from the map server. However,
keeping the address confidential is an unrealistic security re-
quirement because the map server cannot function efficiently
without the address. A more realistic security requirement is
that the mashup only sends the confidential address to the
map server, and not to other external servers. BFlow can en-
force this requirement using request declassification as de-
scribed in Section 4.4.

Script Changes: Depending on the web site, untrusted
scripts and libraries may or may not need to understand the
information flow system. For some web sites, the site pro-
grammers may be able to determine what label an untrusted
script should run with, so that the untrusted script need not
be aware of BFlow. For example, if a web site imports a
JavaScript library like Scriptaculous [script.aculo.us 2009]
and never expects the library to contact external servers or
communicate with different zones, the site could just use the
correct non-empty label and import the library without mod-
ifications. For scripts that only read data and render it to the
user, the site can just load the script with a label containing
all the tags the user can read.

Server Code: A server that supports BFlow scripts must
be able to record the label of data arriving from a script, and
emit that label when it later serves the same data to a script.
A straightforward approach is to store a label with each file
or database entry. Though not necessary, it might also be
helpful for the server to use an IFC-aware operating system
or server framework [Efstathopoulos 2005, Zeldovich 2006,
Krohn 2007a].

Debugging: To debug applications written for BFlow, de-
velopers test their HTML and JavaScript in a BFlow-enabled
browser which reports error messages pertaining to BFlow’s
information tracking system.

5.2 Users Visible Model

End users interact with a BFlow site much like they do with
web sites today. Depending on the web site, a user may
need to understand that a sub-frame may have a different
privacy policy from the rest of the page. For example, a
web site that includes confidential content may also include
an untrusted JavaScript widget running in a sub-frame that
has not read confidential data. In this case, it is the web
site’s responsibility to indicate to the user that any data
he types into the sub-frame may be visible to the public.
This responsibility is more explicit in BFlow, but it already
exists in any web site that includes content from untrusted
programmers whether using sub-frame isolation or not.

6. Implementation
BFlow requires browsers to confine browser JavaScript into
protection zones and to exchange security metadata with
servers in each HTTP request. Since today’s browsers do not
implement these features, and replacing the installed base of
web browsers is difficult, the major challenge in implement-
ing BFlow is making it easy to deploy to browsers.

6.1 Client Implementation

To ensure that our BFlow client modifications are easy to
install for end users, we implemented the client-side refer-
ence monitor as a Firefox 3 plugin. The plugin is a portable
JavaScript and XML package that runs on any platform that
supports Firefox 3; users can install the plugin with only
two mouse clicks. Firefox does not provide many security
related hooks in the plugin interface, but it does implement
the same-origin policy which provides fairly strong isolation
between different origins.

The BFlow plugin takes advantage of the existing SOP in
the browser to implement basic isolation between protection
zones. It associates each zone with a unique unforgeable
domain name, and each different BFlow web site has its
own disjoint set of zone domain names. Zone domains are
of the form Z.site where Z and site are the respective
unique names of the zone and web site. BFlow uses the form
Z.site rather than Z.site.com because browsers permit
a script to remove its host prefix from its domain name
before the SOP comparison; using Z.site.comwould allow
two scripts with zones Z1.site.com and Z2.site.com to
remove Z1 and Z2, and thus communicate based on the
common name site.com.3 Separating zones into different
domains uses the SOP to prevent scripts in one zone from
reading and writing DOM variables and cookies in another
zone.

3 The RM uses Firefox’s SOP implementation, so it handles domains like
cnn.co.uk.

However, the SOP alone does not prevent JavaScript in
two different zones from colluding to leak confidential data;
a script in one zone can communicate with a script in an-
other zone using cross-domain channels like the fragment-
ID channel and postMessage described in Section 4.3.
BFlow’s Firefox plugin disables postMessage, and the flow
invariant described in Section 4.2 ensures that all avail-
able fragment-ID channels in Firefox 3 are also legal data
flow paths according to BFlow’s information flow rules. The
BFlow prototype relies on the FID descendent policy in Fire-
fox 3 and other recent browsers that limits the channel to
parents sending data to children and frames sending data to
the top-level frame [Barth 2008].

When the browser makes an HTTP request to a zone
domain on a BFlow aware server W , the browser RM directs
the request to a web proxy server running on W which then
forwards it to an Apache web server process on W . Using
a proxy prevents the browser from attempting to resolve the
zone’s DNS name which is not an actual DNS domain name;
however, the proxy is specific to our prototype and the same
functionality could be built into the web server.

The browser plugin is 1003 lines of JavaScript and 89
lines of XML including comments. To intercept HTTP re-
quests for inspection and modification we use Firefox’s
“http-on-modify-request” and “http-on-examine-response”
hooks in its XPCOM observer service. These hooks are
called before sending each HTTP request and before re-
turning the response to the rendering engine respectively.

6.2 User Authentication

A user can initially authenticate himself to a BFlow site
using any technique, but any script used in a login web page
should be a trusted script. It could be possible to use an
untrusted script on the login page with a tag to protect the
password data, but the site would need to generate a new
tag for each login attempt, or else a script could transmit the
username and password to another user that attempts to log
into the system later.

After logging in, the user authenticates each subsequent
HTTP request using an authentication cookie. The cookie
is confidential data, but BFlow does not protect it using the
information flow system because the browser must authen-
ticate the user for all HTTP requests, even requests for pub-
lic data where L = {}, so the cookie cannot have its own
tag, otherwise a public page would also be protected by the
cookie’s tag. Instead, BFlow associates the cookie with the
web site’s real domain name, for example, site.com.

Untrusted JavaScript running in a protection zone can-
not read the web site’s authentication cookie because the un-
trusted zone’s domain is of the form Z.site and the authen-
tication cookie is from the domain site.com. Since the do-
mains do not match, or share a suffix, the same origin policy
prevents the untrusted JavaScript from reading the authenti-
cation cookie. However, a standard browser will not send the
authentication cookie for requests originating from Z.site

for requests to site.com because of the SOP, so the BFlow
RM attaches the cookie to these HTTP requests.

6.3 Server Implementation

In the BFlow prototype, the server implements the interface
described in Section 4.4 with server processes called gate-
ways. The client sends raw tag values to the server in the
headers of each HTTP request, and the server response with
tag values in the response headers.

The server uses a gateway process to handle each re-
quest which in turn invokes application logic. The gateway
launches the application logic with the read privileges of the
user, so it can only read the data that the end user may read.
This ensures that the user will not receive data he does not
have permission to read.

Although it is not necessary for a BFlow server to use an
IFC operating system, the prototype’s gateways and applica-
tion logic both run in the Flume IFC system [Krohn 2007a]
which provides IFC within the Linux operating system. Run-
ning the application logic in an IFC OS has the advantage
that untrusted code can safely run both in the client and in
the server in a unified IFC space.

At a lower level, each gateway is a long-running Python
FastCGI process. The gateway serves static files directly
off the file system and queries application request handlers,
which are Flume-confined FastCGI processes, to serve dy-
namic HTTP requests. The gateway is 4144 lines of Python
including comments.

6.4 Server Storage

As described in Section 4.4, a BFlow server can allow un-
trusted scripts to store data on the server as long as the server
associates a label with the data when writing and reading.
The BFlow server prototype implements a key-value stor-
age system within its IFC environment. Untrusted browser
scripts can read and write data to server storage using AJAX
HTTP requests.

When an AJAX request stores data on the server, the
storage system labels the data with the label of the request.
Later, when an HTTP request reads that data, the storage
system only reads data whose label is a subset of the HTTP
response’s label. The underlying storage system is an IFC
database wrapper built on top of PostgreSQL that resembles
the SeaView [Lunt 1990] data model.

Although the prototype storage system runs in an IFC
operating system, it is not necessary to use one. In many
cases, it should be sufficient for the server to store a label
alongside the data and apply the label when reading the
data. Together the IFC database wrapper and the HTTP
storage request handler are 3288 lines of Python including
comments.

7. Applications
To demonstrate that BFlow preserves privacy and is flexible
enough to build web platforms, we implemented two web

applications within the BFlow framework and a collection
of untrusted JavaScript extensions.

7.1 BF-Blogger

Blogger [Blogger 2009] is a popular blog hosting service
that supports confidential blogs that only specific users can
read. Blogger allows a blog’s author to install third-party
JavaScript extensions that run in the browsers of all view-
ers of the blog. These extensions can use confidential data,
such as recent posts in the current blog. Other extensions
talk to external web servers: for example, one extension dis-
plays random images from a photo-sharing web site. All
JavaScript runs in the same browser frame with access to
the blog’s confidential data, including the blog posts and the
reader’s browser cookies making it possible for malicious
scripts to leak the data.

BF-Blogger is derived from Blogger’s HTML, Java-
Script, and third party extensions, but it runs in BFlow. In
a BF-Blogger blog, the top-level trusted zone contains one
child and protection zone for the main blog content (includ-
ing Blogger’s JavaScript) and a separate child and zone for
each extension. BF-Blogger associates the data from a con-
fidential blog with tag t.

The main blog content’s zone contains the blog’s confi-
dential content, so it starts with the label L = {t}. Each ex-
tension zone starts with an empty label L = {}. An extension
can make an HTTP request to the server to read confidential
blog contents, thus changing its label to L = {t}.

We ported seven Blogger extensions to BF-Blogger. The
Twitter and Flickr extensions fetch data from external web
servers; they do not read the confidential blog contents, so
BFlow permits them to fetch the external data. The Recent
Posts extension fetches the current blog’s contents, computes
a set of post snippets, and displays them to the user. The
Cbox extension implements a multi-user chat room. Cbox
consists of multiple cooperating frames, each with its own
JavaScript and the individual frames read and write the other
frame’s DOM. BF-Blogger runs Cbox as if it had read confi-
dential data (L = {t}) because it stores data on the server, and
users might chat about the confidential blog contents. Cbox
consists of multiple frames, but since BF-Blogger groups
them into a single protection zone, BF-Blogger can set the
zone label just once. This changes the label for all of Cbox’s
frames without BF-Blogger being aware of all of Cbox’s
sub-frames. Because the chat contents might be confidential,
we modified Cbox to store its data in BFlow server storage
with label L = {t}. We also wrote two Evil extensions that
run in both Blogger and BF-Blogger; their goal is to leak
data from a confidential blog (see Section 8.1.2).

Extension developers for BF-Blogger need not under-
stand the details of BFlow other than that they may not make
external HTTP requests after reading confidential data.

7.2 BF-Socialnet

BF-Socialnet is a multi-user social network that uses BFlow
to protect privacy. Each user has a profile and a set of friends.
BF-Socialnet permits JavaScript extensions to run within its
pages with access to the user’s profile and friend list. We im-
plemented two JavaScript extensions, a profile comparison
tool and a messaging tool to exercise BFlow’s support for
different communication patterns and privacy policies.

BF-Socialnet’s base friend privacy policy is that user Al-
ice’s profile and friend list is only visible to Alice’s friends.
In addition, BF-Socialnet supports personal data which only
Alice may read and pairwise data that a particular pair of
users may read. To implement these policies, BF-Socialnet
uses a set of tags for each user, one tag for personal data
that only Alice can see (talice), one tag for the Alice’s friend-
visible data (talice: f riends), and one tag for each of Alice’s
friends for pairwise-visible data; for example if Alice is
friends with Bob, BF-Socialnet would use the tag talice:bob.

The BF-Socialnet page has a trusted root page that con-
tains different sub-frames for each third party extension. The
root page has multiple frames for each extension, each with
a different confidentiality mode. For example, in one frame,
the messaging extension runs in a mode that allows it to read
all data that the user can read. In a separate frame, the mes-
saging extension runs with a pairwise tag determined by the
root page. The user selects who to send a message to using a
drop down box in the root frame, and the root frame adjusts
the label on the frame accordingly. The profile comparison
tool only reads data, and therefore only runs in a mode that
allows it to read all data that the user can read. It uses AJAX
requests to read the profiles of all the user’s friends, com-
pares them in the browser, and outputs a list of friends with
similar interests.

User and Developer Visible Model: In BF-Socialnet, an
application writer needs to know what confidentiality mode
his application will run under and what data it hopes to read.
However, he does not need to understand labels, tags, or the
information flow model. Similarly, users should be able to
understand that the different sub-frames abide by different
confidentiality modes because data that they input to a sub-
frame will abide by the frames confidentiality mode. This
decision is similar to the decision that users make currently
when choosing their profile’s privacy policy, so we expect
users will be able to understand it.

8. Evaluation

This section evaluates how well BFlow achieves its two main
goals: prevention of confidential data leaks from in-browser
JavaScript, and compatibility with existing developer uses of
JavaScript. We focus on these topics rather than performance
because the performance penalty of the browser extension
should be minimal and the HTTP proxy can be eliminated
by moving its functionality into the web server.

8.1 Security

8.1.1 Attack Analysis

This section explains how BFlow prevents the example at-
tacks described in Section 3.1, Figures 1 and 2.

In Figure 1a, malicious JavaScript resides in the same
frame (and thus the same zone) as the confidential data.
BFlow ensures the a zone’s label includes tag t before it
allows the zone to read confidential data with tag t, therefore
the malicious script will be running in a zone with tag t. This
label constrains the malicious script so that it can display
data only to the browser’s human reader and the source web
server. The former is not a leak, since the source server
would not have sent the data unless the browser’s user had
permission to read it. The latter is not a leak because BFlow
propagates tag t along with the data, so that the source server
will know it is confidential.

In Figure 1b, the confidential data (and benign JavaScript)
is not in the same zone as the malicious JavaScript. If the
benign JavaScript accidentally tries to communicate with
the malicious JavaScript, the BFlow reference monitor will
forbid the communication unless the malicious JavaScript’s
zone’s label is a superset of the label of the zone with the
confidential data. In the latter case the malicious JavaScript
will be restricted from leaking as described in the previous
example.

8.1.2 Attack Examples in Blogger

In order to verify that BFlow fixes existing security prob-
lems, we implemented two JavaScript extensions for Blog-
ger that steal confidential information.

The first extension contains a cross-site scripting (XSS)
attack that exploits a typical script injection vulnerability.
We wrote this attack, but we believe that XSS attacks in the
wild would use the same leak technique since today’s web
sites do not usually use any counter measures. In this at-
tack, the adversary tricks user A into placing the extension
on his blog so that viewers of his blog execute the exten-
sion’s script. When some user B views A’s blog, the exten-
sion reads user A’s confidential blog contents and user B’s
Blogger cookie and sends it to an external server using an
image request, thus leaking A and B’s confidential data. This
attack works when run on the real Blogger web site, but the
extension is unable to leak data when run on BF-Blogger,
since BFlow forbids the extension from contacting the ex-
ternal server because its zone has seen confidential data.

The second attack is meant to approximate the one pic-
tured in Figure 1b. We believe this is a new style of attack
and are unaware of such attacks in the wild because intra-
browser JavaScript APIs are currently uncommon. The at-
tack consists of two parts: the listener and the leaker. The
leaker takes the place of a vulnerable script API and the lis-
tener takes the place of an adversary that tricks the vulnera-
ble script into reading confidential data and sending it to the
listener. In this attack the listener script resides in a frame

Extension LOC LOC
Included

LOC
Changed

Confidential
Data?

Twitter 6 19 0 No
Flickr 10 0 0 No
Buzz 1 0 0 No
Blogger JS 60 851 0 No
Youtube 1282 610 0 No
Calendar 804 1141 0 No
Weather 2993 797 0 No
Popular Posts 16 0 1 Yes
Commenters 15 0 1 Yes
Recent Posts 9 65 2 Yes
Random Post 34 0 2 Yes
CBox 801 0 89 Yes

Table 2: Lines of code (LOC) changed to port existing wid-
gets to BF-Blogger and whether they see confidential data.

in the adversary’s origin, and listens for a message from the
leaker. The leaker runs in the same origin as the confiden-
tial Blogger page, and sends confidential data to the listener
using postMessage. Again, this attack works when run on
the real Blogger web site, but the leaker is unable to send
data to the listener with postMessageBF in BF-Blogger, be-
cause BFlow forbids the leaker (who has seen confidential
data) from messaging the listener (who has an empty label
L = {}).
8.2 Adoption

In order to evaluate the complexity of developer adoption,
we ported several existing Blogger widgets [Beautifulbeta
2009, Twitter 2009, Flickr 2009] to BF-Blogger. They fall
into three categories:

• Those that load data, images, or libraries from external
servers, or link to external servers.

• Those that read the blog’s confidential content using the
blog’s JSON feed.

• Those that do both of the above.

Extensions in the first category, such as the Flickr, Twit-
ter, and Buzz extensions required no changes to work on BF-
Blogger. These extensions need no confidential data, so they
can be loaded in frames that have an empty label, and are
free to fetch data from external servers.

The Recent Posts extension is in the second category.
It fetches the blog’s most recent posts and displays a list
of them on the blog’s side bar. The original version loads
a JavaScript file from an external site, which fails because
the script reads the blog content before making the external
HTTP request for the JavaScript file. To make this extension
work in BF-Blogger, we copied the content of the external
JavaScript file into the extension.

The two extensions we found in the third category,
namely Popular Posts and Top Commenters are a form of
mashup. They use an external server (Yahoo Pipes [Yahoo
2009]) to process the content of the blog’s confidential com-

ments and then display the results in the page. They illustrate
how a mashup sometimes trusts an external server with con-
fidential data. To add support for these in BF-Blogger we
added a comment feed to the blog and made the feed avail-
able to only the Yahoo Pipes client host. This feed policy is
an explicit declassification of the confidential comments to
the Yahoo Pipes host.

We also examined a number of Google Gadgets [Google
2009a]. The twenty most popular Google Gadgets don’t
act on confidential data, and just import data from external
sites or from Google’s platform. We ported the generated
JavaScript of three Google Gadgets to run on our platform:
Youtube Search, Google Calendar, and Current Weather. All
worked without changes.

The Cbox messaging system required more code changes
since it stores persistent data to the server; it was modified to
read included files from our platform and to store messages
using our server storage API.

9. Limitations

BFlow has a number of limitations; it does not support all
kinds of web page designs and it does not protect against all
types of attacks.

One page design limitation we are aware of is due to the
coarse grained nature of BFlow. Since BFlow only tracks
data at the granularity of frames, a single untrusted browser
frame cannot simultaneously handle confidential data and
public data without marking the public data as confidential.
In order to protect the confidential data, a BFlow applica-
tion would label the frame with L = {t}, but then the public
data would also be labelled with L = {t} and be unavailable
to the public. This is a scenario where finer grained infor-
mation tracking [Myers 1997] would help. Site developers
might also have to refactor their HTML to partition data into
frames to separate confidential data with different tags.

Users might also be confused that frames have different
security labels and type sensitive data into frames with L =
{}which would leak the data. Web sites can help by marking
frames, but BFlow does not provide a solution for this.

When designing a label based confidentiality scheme,
reasoning about labels is not always straightforward and er-
rors in designing a scheme can result in data leaks. BFlow
does not provide assistance for using labels, but other
projects hold promise [Efstathopoulos 2008].

Another limitation of BFlow is that it does not apply
to browser plugins. For example, BFlow does not support
Flash [Adobe 2009] or Java [Gosling 2005] plugins.

There are a number of attacks for which BFlow does not
offer a solution, including covert channels [Lampson 1973]
and phishing. If a malicious script with label L = {t} uses a
covert channel like CPU modulation to send data to a script
with label L = {}, it can leak the confidential data. If a
malicious script uses a phishing attack to trick a user into

revealing his password the attacker can subsequently login
as the user and read all his confidential data.

As described in Section 3.1, BFlow does not protect
against a compromise in the servers, browsers, operating
systems, or the BFlow software itself. For example, if an
attacker can trick a user into installing his malicious Firefox
extension, he could disable BFlow. Similarly, web sites with
weak user authentication are vulnerable in ways that BFlow
does not fix.

If an attacker is able to cause a trusted zone in BFlow to
load and run his malicious code, then the script will act with
the privileges of the trusted zone and will be permitted to
leak confidential data. However, trusted zones are intended
to be very carefully validated and to never run third-party
code; BFlow protects data in all non-trusted zones from
leaks.

10. Related Work

One way to understand existing work is in two broad
categories: discretionary access control (DAC) (including
capabilities-based systems and least-privilege isolation tech-
niques) and mandatory access control (MAC) (including
language-based and runtime IFC).

Works like Tahoma [Reis 2007], Google Chrome [Google
2009b] and MashupOS [Wang 2007] and Caja [Miller
2008] all fit the DAC model. Tahoma isolates applications
from each other using virtual machines so that even buggy
browsers running malicious code cannot tamper with cook-
ies or DOM objects in other browsers. Users can choose
to share data across web sites with explicit whitelists of all
other hosts that can be contacted as the page is rendered and
as the JavaScript (or other plugins) run. Thus, Tahoma of-
fers all-or-nothing sharing at the discretion of the original
web site; it does not allow a web site to safely give confi-
dential data to potentially malicious scripts. The Chrome
browser implements the same style of isolation between
browser windows, but with process-based rather than VM
based isolation.

MashupOS proposes changes to web browsers and servers
to isolate third party JavaScript code with more flexibility
than today’s browser frames and finer granularity than in-
lining scripts today. MashupOS proposes HTML extensions
such as <Sandbox> and <OpenSandbox>, which occupy a
middle ground: they allow the caller and callee to commu-
nicate but only along well-understood channels (as opposed
to across the whole DOM under the status quo). However,
MashupOS has the same limitations that DAC-based operat-
ing systems have: the user (or the integrator in MashupOS’s
terminology) must still decide a priori whether to trust a
third party or not with sensitive data because sandboxed
scripts in MashupOS can leak data to external servers. In
BFlow, untrusted scripts can decide whether to read private
data at runtime.

Other works like Caja follow MashupOS’s lead. Caja
confines a subset of JavaScript into an object-capability
model. As in MashupOS, the goal is to allow finer-grained
sharing of data between cooperating browser components.

By contrast, MAC systems allow untrusted software to
compute with confidential data, while preventing that soft-
ware from exposing it. MAC has long been a technique at
play in programming languages [Denning 1976] and operat-
ing systems [Bell 1976, McIlroy 1992, Dep 1985], which
modern research [Efstathopoulos 2005, Zeldovich 2006,
Krohn 2007a, Myers 1997] suggests is practical for server-
side web applications. The same tools apply in the context
of browser-based security.

The SIF system [Chong 2007b] uses language-based in-
formation flow control to maintain privacy constraints be-
tween browser and server, but assumes no malicious or
buggy JavaScript. The Swift system [Chong 2007a] uses IFC
to automatically split web applications into trusted server-
side Java and untrusted browser-side JavaScript. BFlow ap-
plies similar information control analysis, but at runtime.
BFlow retains a similar correctness property, that code will
produce a fail-stop error instead of leaking data. While Swift
only applies to JavaScript output by the Swift compiler,
BFlow’s reference monitor applies to all JavaScript code,
such as legacy and hand-written libraries. However, BFlow
does make trade-offs; firstly, it has coarser-grained security
compartments (browser zones) while Swift tracks informa-
tion flow per variable. Secondly, BFlow requires users to
install a browser plugin and Swift-like system would not.
Using a browser plugin enables BFlow to ease the adoption
burden placed on site developers at the expense of the end
users.

Vogt et al. [Vogt 2007] also track information flow control
at runtime to prevent cross-site scripting attacks. However,
they have limited their system to client-side changes only,
and therefore cannot prevent attacks that move data back and
forth between the browser and server. Spectator [Livshits
2008] tracks taint between browsers and servers, but its goal
is to detect JavaScript worms, not protect privacy.

Other work proposes curtailing JavaScript’s power to
solve traditional XSS problems. BrowserShield [Reis 2006]
rewrites arbitrary (potentially malicious) JavaScript to a
safer core. BEEP [Jim 2007] firewalls unsafe JavaScript
by limiting which servers it can contact as it executes.
Hallaraker et al. [Hallaraker 2005] audit JavaScript execu-
tion, and use intrusion-detection techniques to sense anoma-
lous execution patterns. These veins of work show promise
against traditional XSS attacks but do not handle data leaks
which involve sending data back and forth to the origin
server.

A complementary way to build web extensions is on the
server-side, rather than on the browser. Facebook [Face-
book 2009] and OpenSocial [Google 2009d] give third-party
developers access to server-based data, allowing them to

customize and extend existing server-based features. The
Menagerie [Geambasu 2008] system presents an interface to
make server data more accessible. All of these systems use
discretionary security controls, requiring users to either trust
or reject third-party code. W5 [Krohn 2007b] proposes to
achieve similar features with MAC, but a W5 implementa-
tion would need to solve the security challenges discussed in
Section 3 to allow third-party server-side extensions to push
unvetted JavaScript to browsers.

11. Conclusion
Many of today’s web sites currently use JavaScript that they
might not understand, including large libraries and third-
party extensions. The combination of these possibly buggy
or malicious scripts and confidential data leaves that data
open to attack. BFlow is a novel browser based information
flow control system that allows mostly unmodified legacy
JavaScript to read, compute with, and write confidential data
without the risk of compromising user privacy.

Acknowledgments

The authors thank Micah Brodsky, Frans Kaashoek, Chris
Lesniewski-Laas, Michael Walfish, Nickolai Zeldovich, the
anonymous reviewers, and shepherd Fred Schneider for their
comments on drafts of this paper. This work was supported
by a National Science Foundation fellowship and Nokia.

References
[Adobe 2009] Adobe. Flash. http://www.adobe.com/

products/flash, Jan 2009.

[Barth 2008] Adam Barth, Collin Jackson, and John C. Mitchell.
Securing browser frame communication. In Proceedings of the
17th USENIX Security Symposium, pages 17–30, San Jose, CA,
USA, July 2008.

[Beautifulbeta 2009] Beautifulbeta. Blogger widgets. http://

beautifulbeta.blogspot.com, Jan 2009.

[Bell 1976] David E. Bell and Leonard La Padula. Secure computer
system: Unified exposition and multics interpretation. Technical
Report MTR-2997, Rev. 1, MITRE Corp., Bedford, MA, USA,
Mar 1976.

[Blogger 2009] Blogger. Site. http://www.blogger.com, Jan
2009.

[Chong 2007a] Stephen Chong, Jed Liu, Andrew C. Myers, Xin
Qi, K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In Proceedings of the
21st ACM Symposium on Operating Systems Principles, pages
31–44, Stevenson, WA, USA, Oct 2007.

[Chong 2007b] Stephen Chong, K. Vikram, and Andrew C. Myers.
SIF: Enforcing confidentiality and integrity in web applications.
In Proceedings of the 16th USENIX Security Symposium, pages
1–16, Boston, MA, USA, Aug 2007.

[Denning 1976] Dorothy E. Denning. A lattice model of secure
information flow. Communications of the ACM, 19(5):236–243,
1976.

[Dep 1985] Trusted Computer System Evaluation Criteria (Orange
Book). Department of Defense, dod 5200.28-std edition, Dec
1985.

[Efstathopoulos 2008] Petros Efstathopoulos and Eddie Kohler.
Manageable fine-grained information flow. In Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems, pages 301–313, Glasgow, Scotland, 2008.

[Efstathopoulos 2005] Petros Efstathopoulos, Maxwell Krohn,
Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazières, Frans Kaashoek, and Robert Morris. Labels
and event processes in the Asbestos operating system. In Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles, pages 17–30, Brighton, UK, Oct 2005.

[Facebook 2009] Facebook. Site. http://www.facebook.com,
Jan 2009.

[Firefox 2009] Firefox. Add-ons. https://addons.mozilla.

org/, Jan 2009.

[Flickr 2009] Flickr. Badge. http://www.flickr.com/badge.

gne, Jan 2009.

[Geambasu 2008] Roxana Geambasu, Cherie Cheung, Alexander
Moshchuk, Steven D. Gribble, and Henry M. Levy. Orga-
nizing and sharing distributed personal web service data with
menagerie. In Proceedings of the 17th International World Wide
Web Conference, pages 755–764, Beijing, China, Apr 2008.

[Google 2009a] Google. Gadgets. http://www.google.com/

webmasters/gadgets/, Jan 2009.

[Google 2009b] Google. Google chrome: a new web browser for
windows. http://www.google.com/chrome, Jan 2009.

[Google 2009c] Google. Maps API. http://code.google.com/
apis/maps, Jan 2009.

[Google 2009d] Google. Open Social. http://code.google.

com/apis/opensocial, Jan 2009.

[Gosling 2005] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification. Addison-Wesley
Professional, third edition, 2005.

[Hallaraker 2005] Oystein Hallaraker and Giovanni Vigna. Detect-
ing malicious javascript code in Mozilla. In Proceedings of the
10th IEEE International Conference on Engineering of Complex
Computer Systems, pages 85–94, Shanghai, China, Jun 2005.

[Jim 2007] Trevor Jim, Nikhil Swamy, and Michael Hicks. De-
feating script injection attacks with browser-enforced embedded
policies. In Proceedings of the 16th international conference on
World Wide Web, pages 601–610, Banff, Alberta, Canada, May
2007.

[Krohn 2007a] Maxwell Krohn, Alex Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert Morris.
Information flow control for standard OS abstractions. In Pro-
ceedings of the 21st ACM Symposium on Operating Systems
Principles, pages 321–334, Stevenson, WA, USA, Oct 2007.

[Krohn 2007b] Maxwell Krohn, Alexander Yip, Micah Brodsky,
Robert Morris, and Michael Walfish. A world wide web without
walls. In Proceedings of the 6th ACM Workshop on Hot Topics
in Networks, Atlanta, GA, USA, Nov 2007.

[Lampson 1973] Butler W. Lampson. A note on the confinement
problem. Communications of the ACM, 16(10):613–615, 1973.

[Livshits 2008] Benjamin Livshits and Weidong Cui. Spectator:
Detection and containment of javascript worms. In Proceedings
of the 2008 USENIX Annual Technical Conference, pages 335–
348, Boston, MA, USA, Jun 2008.

[Lunt 1990] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman,
and W. R. Shockley. The seaview security model. IEEE Trans-
actions on Software Engineering, 16(6):593–607, 1990.

[McIlroy 1992] M. Douglas McIlroy and James A. Reeds. Mul-
tilevel security in the UNIX tradition. Software—Practice and
Experience, 22(8):673–694, 1992.

[Miller 2008] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab
Awad, and Mike Stay. Caja: Safe active content in sanitized java-
script, 2008. http://code.google.com/p/google-caja/

downloads/list.

[Myers 1997] Andrew C. Myers and Barbara Liskov. A decentral-
ized model for information flow control. In Proceedings of the
16th ACM Symposium on Operating Systems Principles, pages
129–142, Saint-Malo, France, Oct 1997.

[Reis 2006] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-driven filtering of dy-
namic HTML. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, pages 61–
74, Seattle, WA, USA, Nov 2006.

[Reis 2007] Charles Reis, Steven D. Gribble, and Henry M. Levy.
Architectural principles for safe web programs. In Proceedings
of the 6th ACM Workshop on Hot Topics in Networks, Atlanta,
GA, USA, Nov 2007.

[script.aculo.us 2009] script.aculo.us. Library. http://script.

aculo.us, Jan 2009.

[Twitter 2009] Twitter. Badge. http://twitter.com/badges/

blogger, Jan 2009.

[Ubl 2009] Malte Ubl. Xssinterface: Javascript library for secure
cross browser javascript messaging. http://code.google.

com/p/xssinterface/, Jan 2009.

[Vogt 2007] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross-site scripting prevention with
dynamic data tainting and static analysis. In Proceeding of the
14th ISOC Network and Distributed System Security Sympo-
sium, San Diego, CA, Feb 2007.

[Wang 2007] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin
Jackson. Protection and communication abstractions for web
browsers in MashupOS. In Proceedings of the 21st ACM Sympo-
sium on Operating Systems Principles, pages 1–16, Stevenson,
WA, USA, Oct 2007.

[Yahoo 2009] Yahoo. Pipes. htpp://pipes.yahoo.com, Jan
2009.

[Zeldovich 2006] Nickolai B. Zeldovich, Silas Boyd-Wickizer, Ed-
die Kohler, and David Mazières. Making information flow ex-
plicit in HiStar. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, pages 263–
278, Seattle, WA, USA, Nov 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

